

ASSESSING FARMER LEARNING PATHWAY PREFERENCES AND AGRICULTURAL TECHNOLOGY UPTAKE BY SMALL SCALE FARMERS IN LURAMBI AND MACHAKOS SUB-COUNTIES OF KENYA

By Dr. Agnes Oywaya-Nkurumwa, Dr. Milcah Mulu-Mutuku Dr. Adijah Ali-Olubandwa Dr. Stephen Wambugu Maina, Egerton University, P.O. Box 536-20115, Egerton, Kenya

A CONSULTANCY REPORT SUBMITTED TO BIOVISION AFRICA TRUST FOR THE ECOLOGICAL ORGANIC AGRICULTURE INITIATIVE IN AFRICA

UNDER SUPPORT FROM SWEDISH SOCIETY FOR NATURE CONSERVATION (SSNC)

DECEMBER, 2018

LIST OF TABLES	iv
LIST OF FIGURES	v
EXECUTIVE SUMMARY	vi
LIST OF ABBREVIATIONS AND ACRONYMS	ix
DEFINITION OF KEY TERMS	x
1.1 Background to the Study	1
1.2 Purpose and Objectives of the Study	4
2.0 THEORETICAL UNDERPINNING OF AGRICULTURAL TECHNOLOGY DISSEMINATION METHODOLOGIES	5
3.0 METHODOLOGY	12
4.0 RESULTS AND DISCUSSIONS	14
4.1 Intrinsic and Extrinsic Factors Affecting Uptake of Technologies among Small Scale F	armers
4.2 Information Channels used to Disseminate Agricultural Information and Extension A	14
Perceptions of How Farmers Learn	gents 16
4.2.1 Background Information of the Extension Agents	16
4.2.2 Common Extension Methods used by Extension Agents	
4.2.3 Findings about extension methods preferred by the agents	
4.2.4 Reasons why Extension Agents Prefer the Extension Methods	24
4.2.5 Methods thought to catalyse the most change	25
4.2.6 Extension Methods that would be used if the agents were well supported	27
4.3 Findings on Small-Scale Farmers' Learning Preferences	
4.3.1 Farmer Demographic Information	
4.3.2 Land Size and Ownership	
4.3.3 Crops grown and income per season	
4.3.4 Types of Animals kept by the Respondents	
4.3.5 Findings on Access to Extension Services on Crop and Livestock Production	
4.3.6 Methods of learning agricultural technologies	
4.3.7 Principal Component Analysis of farmer learning preferences	
5.0 CONCLUSIONS AND RECOMMENDATIONS	
5.1 Conclusions of the Study	

TABLE OF CONTENTS

5.2 Recommendations	46
REFERENCES	48
APPENDIX 1	55
Meta-Analysis of Small Scale Farmer Learning Pathway Preferences and Agricultural Technology Uptake Studies	55
APPENDIX 2	85
Multiple Comparison Table for Farmer Learning Preferences	85
APPENDIX 3	87
Questionnaire for Small Scale Farmers	87
APPENDIX 4	92
Questionnaire for Extension Service Providers	92
APPENDIX 5	95
Map of Kenya Showing Kakamega and Machakos Counties	95

LIST OF TABLES

Table 1: Intrinsic and extrinsic factors affecting uptake of technologies among small scale
farmers
Table 2 Socio-economic attributes of extension agents in Lurambi and Machakos Sub-counties17
Table 3. Reasons for Preferring Extension Methods 25
Table 4. Proportions of respondents per Ward 29
Table 5 Household's land size
Table 6. Farm Income versus Land Ownership 33
Table 7. Crops Grown and Income Obtained in Lurambi and Machakos Sub-counties
Table 8. Types of animals kept by the respondents in Lurambi and Machakos Sub-counties 34
Table 9 Principal Component Analysis of Farmer Learning Preferences 43
Table 10 Analysis of Variance (ANOVA) for farmer learning preferences between Wards 44
Table 11 Multiple comparisons of farmer learning preferences by ward using Tukey HSD 85

LIST OF FIGURES

Figure 1 Methods Commonly used by Extension Agents	19
Figure 2: Extension methods preferred by extension agents	23
Figure 3 Methods thought to result into most farmer learning	26
Figure 4 Methods extension agents would use if supported	28
Figure 5: Gender of respondents	29
Figure 6 Marital status of respondents	30
Figure 7 Age of respondents	30
Figure 8 Education levels	31
Figure 9 Main sources of income	32
Figure 10 Proportions of farmers with no farm income	32
Figure 11. Access to advice on crop production	35
Figure 12. Access to advice on livestock production	35
Figure 13. Sources of agricultural advice on crops	36
Figure 14. Sources of livestock production advice	37
Figure 15. Preferred attributes of crop production service providers	38
Figure 16. Preferred attributes of livestock production service providers	38
Figure 17. Preferred extension service providers	39
Figure 18. Methods of learning crop production technologies	40
Figure 19. Methods of learning livestock production technologies	41
Figure 20 Preference for various extension methods	42

EXECUTIVE SUMMARY

Kenya's agriculture sector is dominated by small scale farmers, and is characterized by; subsistence production, low yielding technologies, low resource base and relatively small volumes of produce on small plots of land. These result in low levels of agricultural production in most parts of the Country, and inability of the sector to contribute effectively to food security and poverty reduction. Adoption of improved agricultural technologies by small scale farmers is therefore critical to increasing agricultural production and productivity.

Studies have shown that adoption of agricultural technologies in many developing countries remains low and slow. Many of the studies done on factors affecting adoption of agricultural technologies have focused on extrinsic factors with little focus on intrinsic factors. Yet, intrinsic factors are key determinants of agricultural technology uptake. An important intrinsic factor is the farmer learning preferences. Understanding how farmers prefer to learn can inform the choice of strategies, channels and tools that would result to better technology uptake. It was on this basis that Biovision Africa Trust, in collaboration with PELUM Kenya and World Agroforestry Centre (formerly ICRAF), under the Ecological Organic Agriculture Initiative (EOA-I) commissioned this study to examine how farmers learn best and what this means to strategies for enhancing adoption of agricultural technology among small scale farmers.

This was a two-phased study that involved a desktop research consisting of published articles and meta-analysis of studies on intrinsic and extrinsic factors affecting uptake of technologies among small scale farmers; and a field survey to assess learning preferences of small scale farmers, and extension agents' perceptions of how farmers learn. It targeted small scale farmers and extension agents, with respondents drawn from Lurambi Sub-county in Kakamega County and Machakos Sub-county in Machakos County. Kakamega and Machakos counties were purposively selected based on three conditions: That the counties have sizeable populations of small scale farmers; the counties have both crop and livestock farming activities; and that BvAT had already been working in these counties.

Simple random sampling was used to select one rural and one peri-urban administrative ward from each sub-county. Shieywe (peri-urban) and Butsotso South (rural) wards were selected in Lurambi Sub-county and, Kola-Muumandu (peri-urban) and Mutituni-Ngelani (rural) wards were selected in Machakos Sub-county. A sample of 142 small scale farmers was then selected from the two sub-counties, through convenience sampling procedure guided by the respective Ward Agricultural Extension Officers. In addition, all extension service providers in the selected sub-counties, from both the public and the private sector were also targeted as subjects in the study. The Statistical Package for Social Science (SPSS Version 22) was used to facilitate data analysis through frequencies, cross tabulations for comparison of categorical data, Principal Component Analysis and Varimax with Kaiser Normalization Rotation Method for extraction of components of farmer learning preferences, and Analysis of Variance (ANOVA) with Tukey HSD Post Hoc Test for comparison of farmer learning preferences in peri-urban and rural setups.

A meta-analysis of 70 studies on adoption of agricultural technologies in Kenya and other developing countries revealed that only 31.4 percent of the studies had findings on intrinsic factors affecting technology adoption (Appendix 1). The rest of the studies dealt with extrinsic factors only. This provides clear empirical evidence on the greatly skewed emphasis laid on extrinsic factors in understanding adoption behavior among small scale farmers.

Results from extension agents revealed that the five most preferred extension methods were; demonstrations (84.6%), farmer groups (82.1%), field days (79.5%), Agricultural Society of Kenya Shows (74.4%), and, farm and home visits (66.7%). However, there were variations in the ranking of these methods in the two study locations. The most common reasons given for preferring these methods were that they reach more farmers and therefore are cost effective. When asked which method they thought catalyzed most change in farmers, extension agents reported demonstrations, with almost 70 percent; field days (53.8%); farm and home visits (51.3%); and ASK shows (51.3%).

A comparison on the extension methods used to teach and what farmers prefer revealed great discrepancies between farmer preferences and methods used to teach them. The greatest discrepancy was noted in the use of demonstrations to teach crop production technologies (over 80%) with farmer preference being about half of extension agents' use of the method (47.6%). Extension methods utilized by extension agents to teach livestock production technologies did not differ much from farmer preferences as for crop production.

Eight components of farmer learning preferences were extracted using Principal Component Analysis. These were: Repetitiveness of extension messages; concrete learning experiences; verification of information received through mass media either by consulting extension officers or fellow farmers and, timeliness of learning session with farmers preferring afternoon sessions to mornings. Other components were: Solitary learning; learning through others rather than actively looking for information themselves; abstract learning especially for peri-urban farmers, and, peer learning rather than learning from extension officers.

This study recommends that extension service providers should align the extension methods they use to disseminate agricultural information with farmers' preferred methods. They should also provide farmers with conducive learning environments in tandem with their learning styles. Extension agents need to tailor-make learning contexts in line with farmer preferences, for improved learning experiences and increased adoption of new and improved agricultural technologies.

LIST OF ABBREVIATIONS AND ACRONYMS

ANOVA	Analysis of Variance
ASK	Agricultural Society of Kenya
BvAT	Biovision Africa Trust
EOA	Ecological Organic Agriculture
EOA-I	Ecological Organic Agriculture Initiative
FAO	Food and Agricultural Organization of the United Nations
GDP	Gross Domestic Product
ICRAF	International Centre for Research in Agro-forestry (World Agro-forestry Centre)
KES	Kenya Shillings
MOALF	Ministry of Agriculture, Livestock and Fisheries
NALEP	National Agriculture and Livestock Extension Programme
NGOs	Non-Governmental Organizations
PELUM	Participatory Ecological Land Use Management Association
SPSS	Statistical Package for Social Science

DEFINITION OF KEY TERMS

- Agricultural Technology Uptake: This is the acceptance of an agricultural technology and implementing it or incorporating it in the agricultural activities one is involved in.
- **Communication channels**: These are means through which information flows forward, backwards and sideways among stakeholders. In the context of this study, these are the means through which agricultural technology information flows to and from the farmer, extension agents and other stakeholders in the agriculture sector.
- **Extrinsic factors**: These are factors emanating from sources other than within the person. With regard to adoption of agricultural technologies, these are factors influencing the farmer's adoption of technology but are not inherent within the individual.
- **Farmer learning pathways**: These are learning activities that enable farmers to build knowledge in agriculture, deepening their understanding of agricultural technologies and best practices, leading to better performance.
- **Farmer learning preferences:** These are learning activities and contexts that through experience, farmers have found to lead to better understanding of agricultural technologies and practices and therefore would choose them above others.
- **Intrinsic factors**: These are factors emanating from within the person. In this study, intrinsic factors related to adoption of agricultural technologies are those factors that are inherently from within the farmer.
- **Small scale farmers**: Farmers involved in growing crops and/or rearing of animals, at least in part, to be used by an individual family, with farming being a significant source of their livelihood.

1.0 INTRODUCTION

1.1 Background to the Study

The economies of most countries in Africa rely heavily on the Agriculture sector, which holds the key to growing inclusive economies in the region (AGRA, 2017). In Kenya, the Agriculture sector contributes about 24 per cent to the GDP and another 27 per cent indirectly through sector economic linkages; and it accounts for 65 per cent of the country's export earnings. More than 70 per cent of informal employment is in the rural areas (Government of Kenya, 2012).

The bulk of agricultural production in many developing countries is carried out by small scale farmers, who account for 80 percent of food production in Africa and Asia (FAO, 2017; Fan, Brzeska, Keyzer, & Halsema, 2013). Small scale agriculture is however, riddled with challenges, being characterized by; subsistence production, low yielding technologies, low resource base and relatively small volumes of produce on small plots of land (Ethical Trading Initiative [ETI], 2005; Fan, Brzeska, Keyzer, & Halsema, 2013). This has resulted in generally low levels of agricultural production in most areas of the country, and inability of the sector to contribute effectively to food security and poverty reduction. This, even as the country strives to work towards attainment of the first and second Sustainable Development Goals (SDGs) which are; to end poverty in all its forms, and end hunger, achieve food security, improved nutrition and promote sustainable agriculture by 2030 (United Nations, 2015).

The adoption of improved agricultural technologies by farmers is critical to increasing agricultural production and productivity, and, meeting the food insecurity and poverty challenges. Agricultural extension service providers would play a crucial role in bridging the gap between these technologies and the farmers and encouraging adoption of the technologies (Swanson, Bentz & Sofranko, 1997; Oakley & Garforth, 1985). It is generally recognized that agricultural extension contributes significantly to enhanced agricultural productivity and improved food security and rural livelihoods.

Extension agents use a variety of methods for disseminating content and facilitating processes that enhance farmer learning and adoption of new practices. They provide farmers with relevant and useful information and skills on agricultural innovations, and also help them to adopt these innovations for improved agricultural productivity (Muyanga & Jayne, 2006). If extension

services are well designed and implemented they are able to lead to improved agricultural productivity (Romani, 2003; Mwabu, 1998), although this will depend on other factors of production being favourable.

In Kenya, the agricultural extension service is divided into two broad categories; the public sector extension service and the private sector extension service. The Government recognizes the role of these two extension sub-sectors as critical to increased agricultural productivity and transforming the largely subsistence agriculture sector into a modern, vibrant and commercially oriented sector (Government of Kenya, 2012). The public sector is dominated by the Government extension service that is provided under the Ministry of Agriculture, Livestock and Fisheries. All counties in the country are served or expected to be served by the government extension services. The private sector has a variety of players including NGOs, private companies, community organizations and private practitioners. The Ministry of Agriculture is the lead extension service provider in the country, and has staff all over the country, up to the administrative Ward level.

Despite demonstrated potential of modern agricultural technologies through research, uptake by stakeholders especially farmers seem to be low and slow (Meijer, Catacutan, Ajayi, Sileshi & Nieuwenhuis, 2014). This realization has been supported by various studies that indicate uptake of agricultural technology by small holder farmers in Sub-Saharan Africa seems to be slow. A study by Kavoi, Mwangi and Kamau (2014) reported continued low adoption of improved agricultural technologies in the semi-arid areas of lower eastern Kenya.

Many studies have been carried out in developing countries, including Kenya, to understand the factors that influence farmers' adoption of agricultural technologies. It has been shown that extrinsic factors such as age, education attainment, income, family size, tenure status, and credit use; and intrinsic factors like value system and beliefs, are linked to adoption processes. In Kenya, a study by Andiema (2014) on factors influencing adoption of energy saving stoves among small scale households in Kapenguria, found that age, technology characteristics and contact with extension services were the main factors that increased the probability of adoption. Another study by Gitu, Onyango and Obara (2015) on factors affecting adoption of improved finger millet varieties by small scale farmers in Mogotio District of Kenya found that gender of

household head, household land control system, household's age and education level significantly affected adoption. Similar findings were obtained by Mshenga, Saidi, Nkurumwa, Magogo and Oradu (2016) in their study on adoption of African indigenous vegetables into agro-pastoral livelihoods in Narok and Kajiado counties. Other factors that have been found to influence adoption include governmental and political forces, farmer perception of new projects/technologies (Khatete, Matuli & Bor, 2016); capital, market availability and credit (Kinyangi, 2014) and, group involvement and social support (Nata, Shauri & Kadere, 2016). Another study carried out in Bungoma County on factors affecting adoption and intensity of use of organic management practices in maize production found that farm distance from homestead, off farm income and occupational options had significant effect on adoption (Gido, 2012).

Although many studies have been done on factors that affect adoption of agricultural technologies, most of them have tended to focus on extrinsic factors rather than intrinsic factors such as knowledge, farmers' perceptions to new agricultural technologies and learning preferences. In view of the continued low adoption of agricultural technologies and the complexity of technology adoption, there is need to focus on intrinsic factors such as farmers' perceptions on technologies, in addition to the extrinsic factors (Meijer, Catacutan, Ajayi, Sileshi & Nieuwenhuis, 2014). This may provide a better understanding of technology adoption since the farmers deal with the technologies and probably perceive technologies differently from researchers and extension agents. More importantly, understanding the farmers' learning preferences may inform what strategies and tools to use in working with them for greater technology uptake. This was the motivation for this study.

The study was commissioned by Biovision Africa Trust, in collaboration with PELUM Kenya and World Agroforestry Centre (formerly ICRAF), under the Ecological Organic Agriculture Initiative (EOA-I). EOA-I is a continental initiative whose mission is to promote ecologically sound strategies and practices among diverse stakeholders in production, processing, marketing and policy making to safeguard the environment, improve livelihoods, alleviate poverty and guarantee food security. The overall goal of the initiative is to mainstream ecological organic agriculture into national agricultural production systems by 2025 in order to improve agricultural productivity, food security, access to markets and sustainable development in Africa (Biovision Africa Trust, 2015). The EOA-I aims at achieving specific results which include: Increased scaling up of best practices in EOA through adoption and adaptation of innovations of the technologies, systems and practices by small scale farmers, especially the women and youth; increased exposure and courage to the public to embrace and consume ecologically grown food; increased productivity, incomes, and improved food security as a result of innovations and adhering to standards; increased local and external demand for safe food; and inclusion of EOA in national agricultural research policies and programmes as well as educational programmes at different levels.

EOA is a holistic production management system that considers the agro-ecosystem in all its diversity. It focuses on attaining a balanced food system designed to enhance biological diversity, promotes healthy use of soils, air and water; relying on renewable resources in locally organized agricultural systems. EOA systems increase soil biological activity and maintain long-term fertility. They rely on biodiversity, ecological processes and cycles to sustain the health of soils, ecosystems and people while minimizing the addition of external inputs like agrochemicals and inorganic fertilizers that may have adverse effects on these systems. EOA combines modern science, innovative practices and tradition to promote good relationships of the various environmental elements. There are a number of farming practices that are carried out under EOA. They include; organic farming, sustainable agriculture, bio-intensive agriculture, permaculture, and ecological farming (PELUM, 2011).

1.2 Purpose and Objectives of the Study

In regards to technology uptake by farmers, studies have focused more on extrinsic factors while less research and studies have been done on intrinsic factors. The purpose of this study was therefore, to examine how farmers learn best and what this means to strategies for enhancing the adoption of agricultural technology among small scale farmers in Kenya. The specific areas of focus were:

- i. A meta-analysis of intrinsic and extrinsic factors from studies undertaken on factors affecting uptake of technology by farmers.
- ii. Review of learning frameworks and channels of information used in informing dissemination of agricultural technology to small scale farmers.
- iii. Assessment of how farmers in some selected counties in Kenya prefer to learn and compare with literature in the task above.

- Assessment of extension agents' perceptions of how farmers in the selected counties in Kenya learn and how these perceptions are similar to or different from the farmers' indicated learning preferences.
- Recommendations of how extension agents should change or reinforce outreach approaches and educational experiences to align with farmers' learning preferences for more successful educational programming and technology uptake.

The study was therefore guided by the following specific objectives:

- i. To carry out a meta-analysis of intrinsic and extrinsic factors affecting uptake of agricultural technologies among small scale farmers in Kenya.
- ii. To review and document the learning frameworks and information channels used in informing current agricultural technology dissemination practices in Kenya.
- iii. To assess the learning preferences of small-holder farmers in Lurambi and Machakos Sub-counties and compare with what is documented.
- iv. To assess extension agents' perceptions of how farmers in Lurambi and Machakos subcounties learn, and compare with the farmers' reported learning preferences.
- v. To formulate recommendations on alignment of agricultural technology dissemination strategies with famers' learning preferences for improved agricultural technology uptake.

2.0 THEORETICAL UNDERPINNING OF AGRICULTURAL TECHNOLOGY DISSEMINATION METHODOLOGIES

Agricultural extension aims at changing farmers' knowledge, skills and attitudes towards agricultural innovations by providing appropriate and relevant information on modern agricultural technologies (Oakley & Garforth, 1985). A major role of extension is to expose farmers to relevant information and then help them use the knowledge to make decisions through which they can optimize the use of their resources and be able to realize their goals in the best way possible (van den Ban & Hawkins, 1996; Muyanga & Jayne, 2006). Agricultural extension is greatly informed by several theories that include the adult education theories, andragogy theories, Social Cognitive Theory, Experiential Learning Theory, Communication Theory, Extension theory, Empowerment theory, Diffusion of Innovations Theory among others (Braun,

McCoy & Finkbeiner, 2014; Clarke, 1999; Knowles, 1984; Kolb & Kolb, 2012; Sewell *et.al.*, 2017; Rogers, 1983, 1995; Botha & Atkins, 2015).

Extension education is a lifelong voluntary informal learning process involving adults of different ages and abilities with no definite syllabus, examination, degree or other certificate. It is given to the participants to change their behavior, attitude and to help them solve their own problems, meet their own needs and interests using their own resources to improve their livelihoods and wellbeing. This broad definition is informed by a combination of several learning theories, frameworks, styles, or learning pathway streams that lead and complement each other in a variety of ways to knowledge translation, technology uptake and informing the adoption process.

Adult Education theories are relevant in actively helping adults focus on solving and managing their problems. Adults learn well through dialogue and other learning styles. Educators need to know how adults define their problems, what adults want to know and why they want to know to design effective education (Boyle, 1981; Braun, McCoy & Finkbeiner, 2014; Franz, 2007). Adult education theories are very relevant in emphasizing how adult learning programmes can harness the experience of participants; considering the age limitations of the participants, promoting personal development while providing adults with as much choice as possible in the availability and organization of learning programmes (Merriam, Caffarella, & Baumgartner, 2007).

Andragogy applies to any form of adult learning and has been used extensively in the design of farmers' training programmes (Knowles, 1984). According to **Knowles' Theory of Andragogy**, adults are self-directed and expect to take responsibility for decisions, need to be involved in the planning and evaluation of their instruction, are most interested in learning subjects that have immediate relevance to their job or personal life where learning is problem-centred rather than content-oriented. Strategies such as case studies, role playing, simulations, and self-evaluations are most useful and instructors adopt a role of facilitator or resource rather than lecturer or grader (Knowles, 1984). This theory has direct implications in the choice of extension methods that an extension agent makes, since they have to appeal to the farmers as adult learners.

Farmers' learning through agricultural extension is also informed by the **Social Cognitive Theory** (SCT), specifically on how people acquire and maintain knowledge, skills and beliefs

through their interactions with, and observations of, others. This theory provides a framework for designing, implementing and evaluating learning programmes that seek to change patterns of behavior. It does so by recognizing the dynamic interaction between the people, their behavior and the social and physical environment in which they are embedded (Sewell *et.al.*, 2017). There is need therefore, for extension agents to take into account the farmers' environment and context in the design and implementation of extension programmes.

Another theory that is useful in guiding farmer learning is David Kolb's **Experiential Learning Theory** (Kolb & Kolb, 2012), although it is mostly applied in pedagogy. Kolb argues that effective learning is seen when a person progresses through a cycle of four stages: The cycle starts by having a concrete experience followed by observation of and reflection on that experience which leads to the formation of abstract concepts (analysis) and generalizations (conclusions) which are then used to test hypothesis in future situations, resulting in new experiences. This awareness can help the extension agent to be more deliberate in designing learning programmes that allow the farmer to go through the four cycles in order for effective learning to occur. Kolb's experiential learning theory also argues that people naturally have specific preferred learning styles, although these are influenced by factors such as social environment, educational experiences, or the basic cognitive structure of the individual. In dealing with farmers therefore, extension agents should keep in mind that they each have their own preferred learning styles. By focusing on active hands-on learning through experience and reflection, experiential learning models bring learners outside of the traditional classroom lecture setting (Ahmed et al., 2017; Andreasen, 2004; Kolb, 2014; Kolb & Kolb, 2012).

Another relevant theory is the **Communication Theory**, which is key in terms of who says what in which channels, to whom and with what effect and is relevant in examining the interaction of audience and media for influence on knowledge, opinions, attitudes and behaviors of audiences (Braun, McCoy & Finkbeiner, 2014; Rogers, 1983). The communication processes are central to encouraging or discouraging behavior and in the diffusion of information and adoption of innovation. This theory is relevant or used to design targeted audience campaigns and messages (Braun, McCoy & Finkbeiner, 1983). **Extension theory** is very helpful to better inform the contextual factors and brings perspective to the communication channels and mechanisms used to influence the individual (Botha & Atkins, 2015). **Empowerment theory** which is a process by which individuals gain perceived autonomy and confidence to achieve control over problems and issues of concern to them through appropriate solutions is also relevant in programmes that leave individuals, groups, communities and/or organizations with sufficient ability and confidence that they can address issues and/or solve problems themselves (Zimmerman, 2000; Zimmerman & Warschausky, 1998). According to Zimmerman (2000), empowerment is both a value orientation for working in the community and a theoretical model for understanding the process and consequences of efforts to exert control and influence over decisions that affect one's life, organizational functioning, and the quality of community life.

Diffusion of Innovations Theory by Everett Rogers sheds much light to the adoption process and the diffusion of innovations. The theory describes diffusion as the process by which an innovation is communicated through certain channels over time among the members of a social system (Rogers, 1995). The Theory explains how a new idea, product or positive behavior (innovation) spreads through a community or social structure depending on characteristics of the innovation, communication channels, time and the social system. Perceived innovation or technology related characteristics such as relative advantage, complexity, compatibility, trialability and observability may affect the extent to which farmers adopt the innovation. This is supported by various studies (Baiyegunhil, 2015; Khatete, Matuli & Bor, 2016; Mbugua, 2009; Mignouna, 2011). Apart from the innovation itself, the Diffusion of Innovations Theory is also concerned with the manner in which a new technological idea, artefact or technique, moves from creation to use and communicated through particular channels, over time, among the members of a social system (<u>Clarke</u>, 1999). Communication channels are an important element in the diffusion of innovations (Rogers, 1995).

Extension education is essentially a process of communication of ideas and skills between and among people (Braun, McCoy, Finkbeiner, 2014). An effective extension communicator needs to have an understanding of the various teaching methods and be able to apply one or a combination of them to effectively deliver the extension message and to be an effective in his work. The ability to communicate determines to a very large degree the success or failure of an

extension worker. The extension worker establishes effective communication with the people he serves so they use this information to continually improve their agriculture and rural life. An effective communication depends on the communication skill, knowledge level, and attitude of the communicator and how he desires to affect his receiver. It is the responsibility of the extension agent to choose the appropriate communication channel and decide the teaching methods and channels of communication that he can use to ensure maximum learning (Braun, McCoy, Finkbeiner, 2014).

Extension teaching methods or techniques are used to set up learning situations and to maximize learning. They are grouped into individual, group and mass methods, based on the number of people they are designed to reach (Oakley & Garforth, 1985). Individual methods include farm and home visits, office calls, telephones calls, personal letters and informal contacts. There are many advantages associated with individual methods of teaching, although the advantages vary depending on the specific method in question. One advantage that cuts across all individual methods is the personal contact involved, which enables the extension agent to exert personal influence on the farmers and hence encourage adoption of innovations. Individual methods however, are more expensive in terms of staff time and travel, and are therefore not widely used in developing countries where the public extension services are characterized by financial and human resource constraints.

Group methods are more economical to use, as they involve extension agents meeting a group of farmers at a go. They provide higher farmer coverage, better environment for shared learning, including farmer to farmer learning, and enable farmers to undertake group action (Oakley & Garforth, 1985). They are especially affective in moving people from the interest stages to the trial stages of adoption process. Examples of group methods include field days, meetings, method and result demonstrations, tours and field trips, and group discussions. In more recent years, the Farmer Field School (FFS) approach has been used as an innovative extension method (FAO, 2006). It is a participatory and interactive learning approach that emphasizes problem solving and discovery based learning. It is an experiential training methodology that allows farmers to learn by doing.

Farmer field schools are widely used especially by non-governmental organizations, and have been found to have a positive effect in improving agricultural productivity. A study by Davis et.al. (2012) found that FFS had a positive impact on crop production among women, low literacy and medium land size farms. Participation in FFS also had significant effect on income and crop productivity overall.

The mass methods which are also commonly referred to as mass media are those that reach large masses of people. Examples of mass media include radio, television, newspapers, magazines, posters, exhibits, displays, educational campaigns, audio visual aids/media, films and printed materials, internet, and mobile phones used by extensionists to carry messages to large numbers of people quickly. They are popular for making people aware of innovations, changing people's knowledge and stimulating their interest (Oakley & Garforth, 1985). The most common mass media methods used in extension are the radio and television. The radio is found in almost every household, and has the advantage in that there are numerous radio stations that broadcast in vernacular and therefore can reach even the most illiterate farmer.

In recent years, mobile phones have emerged strongly among the ICTs as an extension method. Mobile phone-based applications and services are being used widely in the agricultural sector, to provide information on market prices, weather, transport and agricultural techniques via voice, short message service (SMS), radio and even the internet (Aker, 2011). A study carried out by Fu and Akter (2016) on the impact of mobile phone technology on agricultural extension services delivery in India highlights the impact mobile phones have had. According to the study findings, the amount, quality and speed of extension service delivery had improved significantly due to mobile phone usage. There was also greater knowledge and awareness of new agricultural practices, farmers' aspiration to try new technology in the future and access to credit.

The increased penetration of ICTs in developing countries provides a unique opportunity to transfer agricultural knowledge for both public and private extension service providers. Mobile phones have been found to significantly reduce communication and information costs for the rural poor, who are usually disadvantaged by other forms of ICTs like the internet. This has significantly improved access to agricultural technologies among many farmers (Aker, 2011).

In summary, agricultural technology dissemination and learning is underpinned by a variety of theoretical and learning frameworks. They include the adult education theories, and ragogy

theories, Social Cognitive Theory, Experiential Learning Theory, Communication Theory, Extension theory, Empowerment theory, Diffusion of Innovations Theory among others (Braun, McCoy & Finkbeiner, 2014; Clarke, 1999; Knowles, 1984; Kolb & Kolb, 2012; Sewell *et.al.*, 2017; Rogers, 1983, 1995; Botha & Atkins, 2015). Extensionists use one or a combination of extension teaching methods and techniques such as farm and home visits, office calls, telephones calls, personal letters, informal contacts, field days, meetings, method and result demonstrations, tours and field trips, group discussions, Farmer Field Schools, radio, television, newspapers, magazines, posters, exhibits, displays, educational campaigns, audio visual aids/media, films and printed materials, internet, and mobile phones.

3.0 METHODOLOGY

The study adopted an ex-post-facto cross-sectional survey research design and was carried out in two phases. The first phase consisted of a desktop study consisting of a review of journal articles, reports, books, proceedings of workshops and conferences and meta-analysis of studies on intrinsic and extrinsic factors affecting uptake of technologies among small scale farmers. The second phase of the study consisted of field surveys to assess learning preferences of small scale farmers, and to assess extension agents' perceptions of how farmers learn.

The target population consisted of all small scale farmers and extension service providers in Kakamega County in the western part of Kenya, and Machakos County in eastern Kenya (see APPENDIX 5). The two counties are dominated by the Luhya and Kamba ethnic groups respectively whose livelihoods are primarily dependent on agriculture. Kakamega County covers an area of 3,343 square kilometers and has a population of 1,660,651 (Kenya National Bureau of Statistics, 2013). The County is divided into 12 sub-counties, one of which is Lurambi Sub-county. Machakos County on the other hand covers an area of 6,208.2 square kilometers' with a population of 1,098,584. It consists of eight sub-counties, including, Machakos Sub-county which contains the county headquarters.

The two counties were purposively selected for the study based on three conditions. First, the counties have sizeable populations of small scale farmers. Secondly, the counties had both crop and livestock farming activities, and thirdly, BvAT had already been working in these counties. From each county, one sub-county was purposively selected on the basis of diversity of agricultural activities under both rural and peri-urban set-ups. The two sub-counties selected were Lurambi Sub-county in Kakamega County, and Machakos Sub-county in Machakos County. Simple random sampling was then used to select one rural and one peri-urban administrative ward from each sub-county, giving a total of four wards namely. Shieywe (peri-urban) and Butsotso South (rural) wards in Lurambi Sub-county were selected. In Machakos Sub-county, Kola-Muumandu (peri-urban) and Mutituni-Ngelani (rural) wards were selected. A sample of 142 small scale farmers was then selected from the two sub-counties, through purposive sampling in some cases, and convenience sampling in others. Respective Ward Agricultural Extension Officers played a key role in directing researchers to small scale farmers, most of whom belonged to farmer groups. In some cases, specific appointments were made with

the farmer groups, while in other cases, the researchers met them while they were having previously planned group meetings. Apart from small scale farmers, the study also targeted extension service providers in Lurambi and Machakos sub-counties, from the public sector as well as the private sector. All the extension service providers were purposively selected.

Three different instruments were used for data collection. The first instrument was a matrix to guide the desktop study for meta-analysis (APPENDIX 1). Details of publications, major findings on technology uptake, and explanatory variables for technology uptake categorized into extrinsic and intrinsic factors were recorded. The second instrument was an interview guide for small scale farmers (APPENDIX 3) which was used to collect data on small scale farmers' demographic characteristics, farming practices, sources of information on agricultural technology, methods of extension contact and their learning preferences. Most of the items in this instrument were structured, although the last two were open ended.

The third instrument was a semi-structured questionnaire for extension staff (APPENDIX 4) which facilitated data collection on extension agents' preferences and perceptions of how farmers learn. The instruments were validated by experts in the field of Agricultural extension from Egerton University. Reliability of the interview schedule was ensured through a pilot test involving five (5) small scale farmers in sub-counties neighbouring each sub-county selected for the study. Two sets of pilot tests were done, one in each study location, to ensure that the instruments were piloted as close as possible to the actual areas of study. The results of the pilot tests were used to adjust the items in the interview guide and questionnaire and ensure that they yielded consistent results.

The Statistical Package for Social Science (SPSS Version 22) was used to facilitate data analysis through frequencies, cross tabulations to compare data from Lurambi and Machakos Subcounties, Principal Component Analysis and Varimax with Kaiser Normalization rotation method to extract components of farmer learning preferences and Analysis of Variance (ANOVA) with Tukey HSD Post Hoc Test to compare farmer learning preferences in peri-urban and rural set-ups.

4.0 RESULTS AND DISCUSSIONS

4.1 Intrinsic and Extrinsic Factors Affecting Uptake of Technologies among Small Scale Farmers

A meta-analysis was conducted, to identify intrinsic and extrinsic factors affecting uptake of technologies among small scale farmers in Kenya, and developing countries in general. The extrinsic factors affecting uptake of technologies among small scale farmers in Kenya identified by different authors were more than intrinsic factors as shown in Table 1. A total of 70 sources were reviewed, and out of these, only 22 (31.4%) had findings on intrinsic factors affecting technology adoption.

Table 1: Intrinsic and extrinsic factors affecting uptake of technologies among small scale farmers

Extrinsic factors			Intrinsic factors		
i.	Farmer characteristics such as age, education	i.	Farmers' perceptions on uptake of new		
	level and gender (e.g. Gitu, Onyango & Obara,		agricultural technologies (e.g. Adesina &		
	2015; Adesina & Chianu, 2002; Baffoe-Asare		Baidu-Forson, 1995; Adesina & Zinnah,		
	<i>et al.</i> , 2013).		1993; Khatete, Matuli & Bor, 2016;		
ii.	Household and farm related economic factors		Kyambo, 2014).		
	such as household income, availability of	ii.	Farmer perceptions and attitudes about the		
	productive resources, area under cultivation,		technology characteristics, such as relative		
	commodity/ enterprise choice, farm labour		advantage, complexity and compatibility		
	availability, lack of collateral to access credit,		(e.g. Wyche & Steinfield, 2015;		
	problem and opportunity identification, risk		Baiyegunhill, 2015).		
	management, land tenure system, farming as a	iii.	Inadequate knowledge/ information leading		
	business, wealth, competition for resources		to inability to apply technology and level of		
	with household needs, access to credit, lack of		knowledge/awareness about the technology		
	resources (e.g. Baffoe-Asare et al., 2013;		(e.g. Okoedo-Okojie & Onemolease, 2009;		
	Onyango & Obara, 2015; Adesina & Chianu,		Mukasa, 2016; Deshmukh, Kadam &		
	2002; Armand, Afrakhteh & Bozayeh, 2015;		Shinde, 2007; Inambao, 2012; Matata,		
	Akudugu, Guo & Dadzie, 2012).		Ajay, Oduol & Agumya, 2010).		
iii.	Extension related factors e.g. contact with	iv.	Lack of interest (e.g. Kabwe, Bigsby &		
	extension service providers; extension delivery		Cullen, 2016).		
	systems, farmer relationship with service	v.	Risk taking (e.g. Mignouna, 2011).		
	providers, farmer trainings, farmer/client	vi.	Farmer preferences (e.g. Odame, Kimenye,		
	targeting, trustworthiness of the information		Kabutha, Alemu & Oduori, 2013).		
	source, adequacy of information,	vii.	Farmer's goals and values (e.g. Aragao,		

	communication ability and credibility of the	2011)
	extension worker, number of media used,	
	dissemination pathway (e.g. Andiema, 2014;	
	Adesina & Chianu, 2002; Armand, Afrakhteh	
	& Bozayeh, 2015; Akudugu, Guo & Dadzie,	
	2012; Khatete, Matuli & Bor, 2016).	
iv.	Social factors e.g. mobilization and group	
	dynamics, membership to a group, social	
	support, social capital, farmer participation,	
	local leadership and decision makers (e.g.	
	Obayelu, Ajayi, Oluwalana & Ogunmola, 2017;	
	Nato, Shauri & Kadere, 2016; Mignouna, 2011)	
v.	Market related factors: distance to market and	
	input source, low profitability (e.g. Adesina &	
	Chianu, 2002; Adesina et al., 2000; Baffoe-	
	Asare <i>et al.</i> , 2013).	
vi.	Technology related factors e.g. technology	
	characteristics, availability, cost, time taken to	
	benefit from the technology, Exposure to	
	agricultural innovations (e.g. Andiema, 2014;	
	Bwambale, 2015; Niusiima, 2015).	
vii.	Political factors e.g. policy support,	
	institutional support, availability and	
	accessibility of other support services, poorly	
	functioning institutions, lack of support	
	infrastructure (e.g. Khatete, Matuli & Bor,	
	2016; Chilonda & Huylenbroe, 2001).	
viii	. Climate and Agro-ecological issues (e.g.	
	Chilonda & Huylenbroe, 2001).	

The meta-analysis revealed a number of intrinsic factors that affect uptake of agricultural technologies among small scale farmers in Kenya and other developing countries. They included; the farmers' perceptions about new agricultural technologies, and technology characteristics such as relative advantage, complexity and compatibility. Another intrinsic factor was level of knowledge on new technologies, which would affect a farmer's ability to effectively apply the technologies. Level of awareness about the technology is also another intrinsic factor, and is closely linked to the level of knowledge. Level of interest in the innovation, another intrinsic factor, is linked to an important stage in the adoption process, the interest stage which

follows the awareness step in the five-step adoption process (Beal & Bohen, n.d.; Rogers 1995). Other intrinsic factors are; ability to take risks, which is linked to the fourth stage in the adoption process, that of trialability. Trying out new ideas can be full of uncertainties and requires the farmer to be able to take some degree of risk. Other studies found attitude towards the new technologies, farmer preferences and, farmers' goals and values as significant intrinsic factors affecting adoption of agricultural innovations.

The meta-analysis also revealed a great range of extrinsic factors that affect uptake of technologies among small scale farmers. These can be grouped into: Farmer-related factors, Household and farm related economic factors, Extension related factors, Social factors, Technology related factors, Market-related factors, Political factors, and Climatic and agro-ecological issues. Given the number of studies that have focused on these factors, it is clear that these factors have been widely studied and continue to be the focus of many studies on technology adoption among small scale farmers.

Findings of the meta-analysis provide clear empirical evidence on the greatly skewed emphasis laid on extrinsic factors in understanding adoption behavior among small scale farmers. One of the explanations for the over-emphasis on extrinsic factors affecting technology adoption is that these factors by their very nature are external to the farmer and their effect is more obvious or more easily measurable. Intrinsic factors on the other hand tend to be less obvious, and are difficult to collect data on and analyse desired relationships.

4.2 Information Channels used to Disseminate Agricultural Information and Extension Agents' Perceptions of How Farmers Learn

4.2.1 Background Information of the Extension Agents

A total of 39 extension officers were involved in the study, with 22 (56.4%) being from Lurambi Sub-county while 17 (43.6) percent were from Machakos Sub-county. The summary of their socio-economic attributes is shown in Table 2.

Socio-economic Attribute	Frequency	Lurambi	Machakos	Overall
		Sub- County	Sub- County	Percentage
Percentage of female extension workers	18	59.1	31.2	47.4
Percentage of male extension workers	20	40.9	68.8	52.6
Extension workers Aged ≤25 yrs	1	4.5	0.0	2.6
Extension workers Aged 25-35 yrs	13	40.9	23.5	33.3
Extension workers Aged 36-45 yrs	9	13.6	35.3	23.1
Extension workers Aged 46-55 yrs	10	31.8	17.6	25.6
Extension workers aged over 56 yrs	6	9.1	23.5	15.4
Extension workers with certificate	5	13.6	12.5	13.2
Extension workers with diploma	12	36.4	25.0	31.6
Extension workers with degree	16	45.5	37.5	42.1
Extension workers with postgraduate	5	4.5	25.0	13.2
Extension workers from public sector	22	68.2	41.2	56.4
Extension workers from private sector	17	31.8	58.8	43.6
Specialized in crops	17	50.0	35.3	43.6
Specialized in livestock	8	18.2	23.5	20.5
Specialized in both crops and livestock	7	22.7	11.8	17.9
Specialized in other areas (Food	7	9.0		17.9
science, Engineering, marketing and agri-business, entrepreneurship, finance and accounts, statistics)				

Table 2 Socio-economic attributes of extension agents in Lurambi and Machakos Sub-counties

Overall, both genders were well represented among the extension agents who participated in the study, with 52.6 percent being male and 47.6 percent being female. However, there was noticeable variation in gender balance between the two sub-counties. Machakos Sub-county had substantially lower representation of female extension agents at 31.2 percent as compared to Lurambi which had a significantly higher percentage of females (59.1%). The extension agents were generally young, with the highest percentage (33.3%) being in the category of 26 to 35 years, while 2.6 percent were below 25 years.

However, the age distribution in the two subcounties did not follow the same pattern. The extension agents in Lurambi were significantly younger, with 45.4 percent being less than 36 years old, compared to 23.5 percent in Machakos. Only 15.4 percent were in the category of 56 years and above with Machakos posting a higher proportion than Lurambi (23.5% and 9.1%)

respectively). These extension officers are close to the mandatory retirement age, which is set at 60 years by the Kenya Government.

The extension agents were generally well educated, with only 13.2 percent having been trained to certificate level. The highest percentage was in the category of bachelor's degree holders (42.1%) while a significant proportion of 13.2 percent had masters' degrees. Lurambi Subcounty had a higher percentage of extension agents with diploma and degree training (81.9%) as compared to Machakos at 62.5 percent. However, Machakos had a higher percentage of extension staff with postgraduate education (25%) compared to Lurambi (4.5%). Education provides a base for developing the competencies needed for effective extension work. A study by Ng and Fieldman (2009) found that education level not only positively influenced core task performance but was also positively related to creativity and citizenship behaviours. Therefore, high education levels are also likely to contribute to enhanced performance by the extension agents. It can therefore be deduced that both Lurambi and Machakos sub-counties had competent extension staff, based on their education levels.

The extension agents were drawn from both the public and the private sectors. Lurambi Subcounty had majority of extension agents from the public sector (68.2%) as opposed to Machakos Sub-county that had majority of the extension agents (58.8%) coming from the private sector. The public sector was represented by the Ministry of Agriculture, Livestock and Fisheries (MOALF) in both study locations. In Lurambi Sub-county, the private sector was mainly represented by non-governmental organizations (NGOs), examples being One Acre Fund and Welt Hunger Hilfe. In Machakos Sub-county, in addition to NGOs, there was representation from agro-vet dealers and private companies dealing with agro and veterinary products and services. The significant representation of the private sector in the provision of extension services in both locations is a result of the National Agriculture Sector Extension Policy, which advocates for pluralism in the provision of agricultural extension services in Kenya (Government of Kenya, 2012).

The extension agents represented different areas of specialization, although the majority specialized in crops (50% in Lurambi and 35.3% in Machakos). A significantly higher percentage of extension agents were specialized in crops in Lurambi Sub-county. This could be

due to the fact that more extension agents in the Sub-county were from the public sector, which tends to be dominated by staff specialized in crops. Only 18.2 percent and 23.5 percent were specialized in livestock in Lurambi and Machakos sub-counties respectively. Lurambi had more staff trained in both crops and livestock (22.7%) as compared to Machakos (11.8%). Other areas of specialization reported by the respondents included food science, engineering, marketing, agri-business, and entrepreneurship.

4.2.2 Common Extension Methods used by Extension Agents

The respondents were asked to select from a list of extension methods, those that they commonly used. The findings were as indicated in Figure 1.

Figure 1 Methods Commonly used by Extension Agents

The findings indicate that the extension agents used a variety of teaching methods in reaching the farmers. This is in line with the general practice in Kenya where due to the pluralistic nature of extension services, many service providers are involved, and they use a variety of extension methods depending on their circumstances and target group (Government of Kenya, 2012).

In Lurambi Sub-county, the leading extension method was the use of demonstrations, where 100 percent of the respondents reported that they commonly used this method. These were followed by; farmer groups, field days, Agriculture Society of Kenya (ASK) shows and farm and home visits, all reported by 95.5 percent of the respondents. The use of contact farmers and meetings/barazas was also reported by a large majority (90.9%) of the respondents in the Sub-county. Other methods reported to be widely used were tours and field trips (86.4%), printed materials (63.6%) and mobile phones (59.1%). The six most commonly used methods in Lurambi Sub-county were therefore; demonstrations, farmer groups, field days, ASK shows, farm and home visits, meetings, and, use of contact farmers.

In Machakos Sub-county, the extension agents also reported using a variety of teaching methods. The leading was field days (94.1%), followed by ASK shows (82.4%), demonstrations, farmer groups and meetings (76.5% each), and, farm and home visits (58.8%). There are notable differences between Lurambi and Machakos in the ranking of the commonly used methods as well as in the percentages of respondents reporting using the teaching methods. While demonstrations were the leading method used by all the respondents (100%) in Lurambi, they came third in Machakos, with 76.5 percent reporting using them. In collecting data, the study did not distinguish between method demonstrations and result demonstrations, and therefore it is not possible to distinguish which specific demonstrations were being used by the extension agents.

Field days were the leading method in Machakos and the second in Lurambi, although the percentages of respondents reporting this were very close (94.5% and 95.5% respectively). Another notable difference between Lurambi and Machakos sub-counties is that farm and home visits were reported to be used more in Lurambi (95.5%) than in Machakos (58.8%). Lower percentages of respondents in Machakos reported using the various methods as compared to those in Lurambi, which implies that the extension agents in Lurambi used a wider variety of methods as compared to those in Machakos. This could be linked to the greater representation of

public sector extension agents in Lurambi as opposed to Machakos where private sector extension agents were the majority.

The top six methods used in both sub-counties fall under the category of group extension teaching methods. This could be due to advantages associated with group extension methods which include; greater coverage and hence cost effectiveness, more conducive learning environment, and, encouragement of group action by farmers (JICA, 2008; Oakley & Garforth, 1985).

Almost all extension agents reported using field days (94.9%). This could be due to the advantages associated with this method of extension. According to Oakley and Garforth (1985), field days provide opportunities for extension agents to hold method or result demonstrations on a slightly higher scale than usual. Through field days, extension agents can bring together more farmers than they would under normal demonstration methods. In addition, the field days provide an opportunity for other extension service providers to participate, hence farmers get information from a variety of sources. Field days can vary in size from a few farmers to many, and their purpose is mainly to introduce a new idea and stimulate interest of many farmers (JICA, 2008).

An interesting finding was on the high percentage of respondents who reported using Agricultural Society of Kenya (ASK) shows (95.5% in Lurambi and 82.4% in Machakos). These shows are usually organized at regional level, and are usually annual events. They represent a highlight in the calendar of the Ministry of Agriculture, Livestock and Fisheries and its exhibition stand is usually a big attraction for the general public. Many other extension service providers including parastatals, NGOs and private companies also participate in the agricultural shows. Many farmers, young and old attend the agricultural shows in their regions and even in other regions.

Apart from the top six methods, other methods reported by a significant percentage of respondents included; use of printed materials in Lurambi (63.6%) and use of mobile phones (59.1% in Lurambi and 47.1% in Machakos). With regard to printed materials, their use as an extension teaching method tends to be restricted due to low literacy levels among rural people in many developing countries. However, the fairly high percentage of extension agents reporting

use of this method in Lurambi could imply that the farmers in the area are fairly literate. Mobile phones are an emerging information communication technology (ICT) based extension method that is gaining popularity in many developing countries. The significant percentages of extension agents reporting using them Lurambi and Machakos is an indication that mobile phones are an important channel for communicating extension messages to farmers in the two locations. Mobile phones have been found to be important for communicating information on markets and weather (Chharchhar & Hassan, 2013). A significant percentage (48.7%) of extension agents in Lurambi Sub-county reported commonly using printed materials, which is an indication that a sizeable proportion of their target group was literate.

The differences in the extension methods commonly used in the two study locations could be attributed to the difference in the representation of government and private sector extension agents, whereby Lurambi had more government agents while Machakos had more private sector agents. This assumption is supported by the findings of a study by Chimoita (2014) which found variations in the extension methods used by public sector and private sector extension service providers. Findings revealed that farmer field schools, demonstrations, contact farmers method and community leaders were most utilized methods to promote extension services by private firms. On the other hand, methods mostly utilized by government extension officers included; field days, agricultural shows, church based groups, and organised field visits.

4.2.3 Findings about extension methods preferred by the agents

From the list of commonly used extension methods, the extension agents were asked to indicate which ones they preferred to use. This is because of the realization that it is possible for an extension agent to use one particular method while preferring another. The findings were as indicated in Figure 2.

Figure 2: Extension methods preferred by extension agents

The six most preferred extension methods in Lurambi Sub-county in order of preference were: Demonstrations (100%), Farmer groups (90.9%), Field days and ASK shows (86.4%), Meetings/Barazas (77.8%) and Farm and home visits (72.7%). The high percentages of respondents indicating that they preferred the methods (over 70%) show that all the six methods were popular among extension agents in the region.

On the other hand, in Machakos Sub-county, the most preferred methods were farmer groups and field days (70.6%), followed by demonstrations (64.7%). Farm and home visits, and ASK shows came third with 58.8 percent of the extension staff reporting that they prefer them. Meetings were reported to be preferred by less than half of the respondents (41.2%). From the results, the two extension methods that appear to be highly preferred in both study locations are farmer groups and field days, although the percentages are higher for Lurambi Sub-county. It is interesting to note that although analysis of combined data reveals that demonstrations were the

most preferred methods (84.6%), there was significant variation between the two study locations. Demonstrations were reported to be used and preferred by all extension agents (100%) in Lurambi Sub-county but they were not as popular in Machakos, and only 64.7 percent of the respondents reported that they preferred them.

The ranking of the extension methods commonly used and preferred in Lurambi Sub-county did not differ significantly as they roughly followed the same order. A point of departure was with the farm and home visits, which were among the top most commonly used methods (reported by 90.9% of respondents), they ranked fairly low in the list of preferred extension methods. It can therefore be inferred that although farm and home visits are commonly used, the extension agents would prefer to use them less as compared to other methods. The same case applies for use of contact farmers, which featured highly among commonly used methods (reported by 90.9% of respondents), yet this method did not feature in the list of six most preferred methods of teaching.

For Machakos Sub-county there were some notable differences in the ranking of the extension methods as well. Results showed that field days were leading in usage and preference, but farmer groups which were third in terms of usage came first, alongside field days, in terms of preference. This is an indication that although the extension agents are not using farmer groups as much as field days, they rank them the same in terms of preference. Farm and home visits came last in the list of six most preferred methods of extension, although the percentage of respondents was fairly high at 72.7 percent.

Majority of the most preferred methods of extension in both locations fall under the group methods of teaching, where the extension agent meets with farmers in groups rather than individually (JICA 2008; Oakley & Garforth 1985). This could be associated with the advantages of group methods of extension.

4.2.4 Reasons why Extension Agents Prefer the Extension Methods

When asked about the reasons for preferring the extension methods, the extension agents gave four main reasons, as summarized in Table 3. The most common reasons given for preferring demonstrations, field days, farmer groups and ASK shows were that they reach more farmers and are cost effective. This is in line with the generally agreed upon advantages of group methods of extension (Oakley & Garforth, 1995). Another commonly given reason was that some of these methods were easier to use, especially for the demonstrations and field days.

Extension methods	Reasons for preferring				
	Cost effective	Reaches more farmers	Easier to use	Less time consuming	Others
Farm and home visits	28.2	15.4	15.4	2.6	2.6
Field days	20.5	61.5	20.5	7.7	2.6
Demonstrations	20.5	33.3	33.3	5.1	2.6
Farmer groups	20.5	43.6	15.4	10.3	2.6
Contact farmers	10.3	20.5	17.9	17.9	0
Tours and field trips	5.1	17.9	5.1	5.1	2.6
ASK Shows	7.7	48.7	5.1	2.6	2.6
Meetings/Barazas	7.7	43.6	15.4	12.8	0

Table 3. Reasons for Preferring Extension Methods

Other reasons given which were not captured among the options given were that the methods address specific needs and give the real picture on the ground (mainly with regard to farm and home visits) and, they are more practical (demonstrations). The reasons given by the extension agents for preferring the various extension methods are in line with the advantages that are associated with these methods.

4.2.5 Methods thought to catalyse the most change

The extension agents were also asked about which methods they thought brought about the most change in knowledge, skills and attitudes among farmers, leading to improved adoption of innovations. The responses were as indicated in Figure 3.

Figure 3 Methods thought to result into most farmer learning

The method that was reported to bring about the most change was use of demonstrations, with 81.8 percent of respondents in Lurambi Sub-county and 52.9 percent of the respondents in Machakos Sub-county choosing this method. With regard to Lurambi Sub-county, this is not a surprising finding since demonstrations were reported to be the most commonly used and also the most preferred method. However, it is an interesting finding with regard to Machakos since the demonstrations were neither the most commonly used nor the most preferred method of extension, being commonly used by 76.5 percent of the respondents as compared to field days standing at 94.1 percent and preferred by 64.7 percent compared to farmer groups and field days, both recording 70.6 percent (see Figures 1 and 2). It then implies that the extension agents' preferred methods are not those they believe bring about the most farmer learning, and they are aware of this.
Field days, farm and home visits and ASK shows were reported by an almost similar percentage of respondents (53.8%; 51.3% and 51.3% respectively). It is worth noting that field days and ASK shows are also used as platforms for conducting method and result demonstrations. Farmer groups came fifth with 46.2 percent of extension agents citing them. This finding agrees with that of a study on extension workers' perceptions of how farmers prefer to learn, whereby 95 percent reported demonstrations and 90 percent field days (Franz, Piercy, Donaldson, Westbrook & Richard, 2010).

The extension agents all reported more than one method they thought brought about the most change among farmers, meaning that they recognized that no single method on its own can work effectively. The findings also revealed that mass media was the least effective in causing change, with radio, television and video being the least effective in that order. This agrees with what is commonly reported in literature, that the lack of personal contact and personal influence of the extension agent makes mass media less effective in convincing farmers to change their attitudes and practice (Oakley & Garforth, 1995).

4.2.6 Extension Methods that would be used if the agents were well supported

When asked which methods they would use if they were well supported, they reported as summarized in Figure 4.

For both study locations, television was reported by the highest percentage of respondents as an extension method that they would use if well supported (68.2% in Lurambi and 47.1% in Machakos). It was followed by radio, with 50 percent and 47.1 percent respectively for Lurambi and Machakos sub-counties. Video was in third place for both study locations.

Television falls under mass media along with radios, video, newspapers and internet among others. Mass media has advantage in that it reaches many people at once with the same message and is quite cost effective compared to individual and group methods. Television is particularly appealing because it is an audio-visual, appealing to both sight and hearing. A study by Abubakar, Ango and Buhari (2009) found that television and radio were commonly accessible mass media that people used to obtain agricultural extension messages, although the respondents reported challenges in the cost of acquiring and maintaining them. The study recommended the need to embrace ICTs in extension.

Figure 4 Methods extension agents would use if supported

It is interesting however that the three methods were ranked to be the least effective in causing change among farmers. This implies that the extension agents recognized the advantages associated with the three methods, despite their weakness in directly influencing change among farmers. Only 27.3 percent of respondents in Lurambi and 17.6 percent in Machakos reported that they would use mobile phones if well supported.

4.3 Findings on Small-Scale Farmers' Learning Preferences

4.3.1 Farmer Demographic Information

The study was conducted in two counties, Machakos and Kakamega Counties. From each county, one sub-county was selected, Machakos Sub-county (45.8%) and Lurambi Sub-county (54.2%). A total of 142 farmers were interviewed from two wards in each selected sub-county as shown in Table 4Table 4.

Sub-County	Ward	Frequency	Percent
Machakos	Kola-Muumandu	36	25.4
	Mutituni-Ngelani	29	20.4
Lurambi	Shieywe	35	24.6
	Butsotso South	42	29.6
Total		142	100

Table 4. Proportions of respondents per Ward

Majority of the small scale farmers interviewed were female, representing almost three quarters (72.5%) of all those interviewed (*Figure 5*). However, Lurambi had a slightly higher proportion of female farmers (76.6%) than Machakos (67.7%).

Figure 5: Gender of respondents

Concerning their marital status, over 80 percent were married with the two counties posting almost similar proportions at 86.2 percent in Machakos and 80.5 percent in Lurambi Sub-counties (*Figure 6*).

Figure 6 Marital status of respondents

A good proportion (40.1%) of all those interviewed were aged over 55 years with Machakos Sub-county recording a much older farmer population than Lurambi Sub-county at 47.7 percent and 33.8 percent respectively. The youthful population accounted for less than a quarter of the respondents with Machakos recording a much smaller proportion of the youthful population than Lurambi at 15.4 percent compared to 27.3 percent as illustrated in *Figure 7*.

Figure 7 Age of respondents

Generally, education levels were lower than the national rates of education with 12 percent reporting no formal education compared to 7 percent nationally and 30.3 percent having secondary or tertiary education compared to 43 percent nationally (Kenya National Bureau of Statistics, 2014). A closer scrutiny revealed slightly lower education levels in Lurambi than in Machakos Sub-county as depicted in *Figure 8*.

Figure 8 Education levels

The respondents had an average farming experience of 19.9 years, ranging from one year to 66 years. Additionally, they had varied sources of income though almost all cited farm income as the main source of household income as shown in *Figure 9*Figure 9. However, 9.9 percent of all the respondents did not get any farm income; all that was grown and the animals kept were for consumption purposes only. Lurambi had a larger proportion of such farmers than Machakos at 13 percent and 6.2 percent respectively (see *Figure 10*).

Figure 9 Main sources of income

Figure 10 Proportions of farmers with no farm income

4.3.2 Land Size and Ownership

Land size per household in the study areas varied between 0.13 acres and 10 acres with an average size of 2.17 acres. Farmers in Machakos Sub-county had slightly bigger pieces of land than those in Lurambi as shown in *Table 5*.

County	Minimum	Maximum	Mean	Standard
	acreage	acreage	acreage	deviation
All	0.13	10	2.17	2.14
Machakos	0.25	10	2.68	2.58
Kakamega	0.13	9	1.69	1.49

More than half (55.6%) of the respondents owned the land they farmed with Lurambi Subcounty recording a higher proportion of 70.1 percent compared to Machakos 38.5 percent. Higher proportion of famers in Machakos Sub-county farmed on family land (61.5%) compared to Lurambi Sub-county with a proportion of 27.3 percent. A small proportion (1.4%) rented the land they used, all of whom were in Lurambi Sub-county. This has implications on the agricultural technologies that can be adopted by these farmers. For instance, technologies requiring or leading to permanent or near-permanent installations may not be appropriate for rented land, and sometimes, family land.

Further investigations on land ownership in relation to whether respondents realized a farm income or not revealed that all who rented land got some income from it as shown in *Table 6*.

Sub-county	Own land		Fam	ily land	Rented land	
	%	Farm	%	Farm	%	Farm
		Income		Income		Income
Machakos	38.5	88.0	61.5	97.5	0.0	-
Lurambi	70.1	85.2	27.3	90.5	2.6	100
All	55.6	86.1	43	95.1	1.4	100

Table 6. Farm Income versus Land Ownership

4.3.3 Crops grown and income per season

Various crops were grown in the study area as shown in *Table 7* with only 1.4 percent growing only one type of crop and another 16.2 percent growing only two types of crops. The rest of the farmers grew at least three types of crops. Earnings from these crops realized a maximum of KES 180,000 per season. Farmers in Lurambi had a wider range of crops than those in Machakos and their income was higher too. The importance farmers attach to crops may not necessarily be on the basis of the income it brings to the household, as illustrated by a farmer earning an

average of KES 126,000 per season from sugarcane yet relegating it to 3rd position after maize (KES 64,000) and beans (KES 9,000).

	% of farmers growing crop						
Crop		Machakos			Lurambi		
	1 st	2^{nd}	3 rd	1 st	2 nd	3 rd	
Maize	86.2	3.1	6.2	80.5	10.5	2.6	
Vegetables	13.8	12.3	16.9	2.6	7.9	24.7	
Bananas	-	-	-	5.2	14.5	7.8	
Sugarcane	-	-	-	5.2	2.6	1.3	
Tubers	-	-	4.6	3.9	2.6	13.0	
Legumes	-	84.6	58.4	1.3	53.9	7.8	
Millets	-	-	1.5	1.3	2.6	3.9	
Groundnuts	-	-	-	-	2.6	14.3	
Fruits			3.1	-		-	
Min. income per	0.00	0.00	0.00	0.00	0.00	0.00	
season (Kes)							
Max. income per	40,000.00	40,000.00	36,000.00	180,000.00	48,000.00	126,000.00	
season (Kes)							
Av. income per	4,707.65	2,775.65	2,315.35	9,882.40	3,625.95	3,014.45	
season (Kes)							

Table 7. Crops Grown and Income Obtained in Lurambi and Machakos Sub-counties

4.3.4 Types of Animals kept by the Respondents

The main animals kept in the study areas were cattle, chicken, goats and sheep (see *Table 8*Table 8). Others were donkeys kept by 6.2 percent of the respondents in Machakos but none in Lurambi and pigs kept by 6.5 percent of the respondents in Lurambi but none in Machakos. Some of the respondents in Machakos (12.3%) kept bees with between one and five beehives per household.

Table 8. Types of animals kept by the respondents in Lurambi and Machakos Sub-counties

Type of animal	Percent	Average number	Local breed	Exotic breed	Crossbreed
Cattle	66.2	2	75.5	3.2	21.3
Chicken	80.3	11	61.4	36.8	-
Goats	41.5	2	94.9	5.1	-
Sheep	16.2	7	100	0.0	-

4.3.5 Findings on Access to Extension Services on Crop and Livestock Production

The respondents were asked to state whether they accessed extension services on crop and livestock production within the last 12 months. Interestingly, 16.2 percent of them had not accessed any agricultural advisory services.

Figure 11. Access to advice on crop production

Figure 12. Access to advice on livestock production

An investigation of the sources of agricultural advisory services revealed that majority of the respondents accessed crop production advice from public extension officers and none reported accessing from agricultural input dealers (see *Figure 13* and *Figure 14*). This is in agreement with findings by Muyanga and Jayne (2006) that reported a skewed private extension provision towards high-value crops. Non-Governmental Organizations (NGOs) provided advice to half of the respondents in Lurambi while in Machakos they reached less than a quarter of the farmers.

Research organisations did not provide agricultural advice to any of the farmers in Machakos unlike in Lurambi where these organisations reached 17.5 percent and 16.4 percent of farmers with crop production and livestock production advice respectively. Apparently, the radio is an important source of agricultural advice in both counties, reaching approximately a quarter of the respondents.

Figure 13. Sources of agricultural advice on crops

Almost a quarter of the respondents in Lurambi received agricultural advice on both crop and livestock production from neigbours unlike in Machakos where the proportion was quite low. This could be a reflection of the strength of the social ties in the two areas, whereby stronger social ties are likely to encourage more information sharing. None of the farmers in Machakos County and only 7.9 percent in Lurambi received agricultural advice from the ASK shows. This was in contrast to what was reported by the extension agents about extension methods that they commonly used, whereby 95.5 percent and 82 percent of the agents in Lurambi and Machakos respectively reported commonly using this method.

Figure 14. Sources of livestock production advice

Farmers reported that they chose to receive agricultural advice from various service providers for a number of reasons. These included; accessibility of service provider, reliability of the service provider, the fact that the same message could be given several times (repetitiveness), cost of the service, usefulness of the information, and professionalism of the service provider (see *Figure 15* and

Figure 16). Accessibility of service providers, usefulness of information provided and reliability of service providers were some of the important attributes that farmers considered in selecting service providers.

Almost half of the respondents that selected public extension officers and NGOs as sources for crop production advice did so due to their accessibility and usefulness of advice received. The radio was selected due to its accessibility. Cost of service provided was not very much of a concern to the farmers probably because all service providers in the two counties did not charge for the advice given.

Figure 15. Preferred attributes of crop production service providers

The findings on the preferred attributes of extension service providers on livestock production are summarized in Figure 16.

Figure 16. Preferred attributes of livestock production service providers

When asked which service providers they preferred for crop and livestock production advice, farmers indicated a preference for government extension agents. The findings are indicated in *Figure 17Figure 17*.

Figure 17. Preferred extension service providers

This is in line with the findings of a study by Nambiro, Omiti and Mugunieri (2006) which indicated that government extension agents are highly regarded by farmers and their advice is likely to be operationalized. Non-Governmental Organisations came second in preference and the least preferred were Community Based Organisations with near zero percentages. According to Nambiro, Omiti and Mugunieri (2006), extension delivery by community based organisations are perceived to be of low quality. Radio was rated at the same level as NGOs in providing livestock production advice.

4.3.6 Methods of learning agricultural technologies

A comparison was made on the extension methods used to teach farmers and the methods they prefer to learn both crop and livestock production technologies. Results presented in *Figure 18* and *Figure 19* reveal great discrepancies between farmer preferences and methods used to teach them.

Figure 18. Methods of learning crop production technologies

The greatest discrepancy is noted in the use of demonstrations to teach crop production technologies with farmer preference being about half of extension agents' use of the method. Whereas over 80 percent of farmers reported being taught crop production technologies using demonstrations, only 47.6 percent preferred this method of learning as illustrated in *Figure 18*. The least preferred method was Farmer Field Schools at 5.6 percent.

It is interesting to note that for all the extension methods, except for tours and field trips, the percentages of farmers who reported that they preferred a given method were lower than the percentages who reported using the method. This implies that the farmers did not have a very strong preference for any of the methods.

The findings on extension methods used for learning livestock production technologies and the methods preferred are summarized in Figure 19.

Figure 19. Methods of learning livestock production technologies

Differences between the methods used to teach farmers livestock production technologies and how they prefer to learn were not very wide. On the other hand, extension methods utilized by extension agents to teach livestock production technologies did not differ much from farmer preferences (see *Figure 19*). Comparing farmer and extension agents' preferences for extension methods revealed greatest discrepancies for farmer field schools, field days, demonstrations, and tours and field trips (see *Figure 20*). This agrees with findings of a study by the National Agriculture and Livestock Extension Programme (NALEP) (2011) on effective extension methods for different situations, which found that extension agents and farmers had different choices of the six most important extension methods. The study further found that while Farm and home visits were the most preferred method among farmers, they were unpopular among extension staff who viewed them as uneconomical in terms of time and staff.

Figure 20 Preference for various extension methods

4.3.7 Principal Component Analysis of farmer learning preferences

Using Principal Component Analysis and Varimax with Kaiser Normalization rotation method, eight components of farmer learning preferences with Eigen values greater than 1 were extracted. Cumulatively, these eight components contributed to 67.05 percent of observed variance (see *Table 9*). The component with the highest loading was repetitiveness of extension message accounting for 11.7 percent of the observed variance. This implied a need to repeat extension message several times for farmers to understand and internalize. This was followed by concrete learning accounting for 11.14 percent of observed variance. Farmers preferred learning in an environment where they can try out what is being taught, especially in farmer farms.

Verification of information received through mass media either by consulting extension officers or fellow farmers was an important component accounting for 9.99 percent. Others were time of the day learning was taking place, preferring to learn in the afternoon rather than in the morning, solitary learning, learning through others rather than actively looking for information themselves, abstract learning, and peer learning rather than learning from extension officers. Peer learning is increasingly being used to train farmers especially where training videos are being used to pass extension messages. Chowdhury, Van Mele and Hauser (2011) as well as Gandhi *et al.* (2007)

found farmer-to-farmer training videos effective in communicating and convincing farmers to adopt an innovation especially when featuring actors similar to them in terms of education and agricultural expertise, culture, dialect and accent.

 Table 9 Principal Component Analysis of Farmer Learning Preferences

Component	Extraction loading	% of variance
Component 1: Repetitiveness of message	0	11.70
• When I am learning something, I prefer to hear it more than once	.888	
• When I hear something once I remember it well and don't need to have it	883	
repeated		
Component 2: Concrete learning		11.14
• I enjoy learning new things and am always ready to try them out	.744	
• I learn best when I try out what I am taught	.727	
• I prefer learning at my home/farm or at the home/farm of another farmer	.558	
Component 3: Verification of information		9.99
• Before I apply something learnt from the TV or radio, I have to check with my fellow farmers	.790	
• Before I apply something learnt from the TV or radio, I have to check with extensionists	.786	
• I apply technologies learnt from the TV or radio, without consulting other people	679	
Component 4: Timeliness of learning		8.26
• The best time for me to learn is in the morning hours	811	
• I prefer to learn during the afternoon hours	.743	
• I can learn well at any time of the day	.606	
Component 5: Solitary learning		7.57
• I prefer to learn or be taught alone	.788	
• I usually fear to try out new things and prefer to wait for others to try them out first	.610	
• I prefer to learn in a group together with other farmers	564	
Component 6: Learning through others		6.60
• I enjoy it more when I am taught in a location away from my usual surrounding	.697	
• I prefer to get information through other farmers or the extension service other than getting information for myself	.687	
Component 7: Abstract learning		6 20
• Llike to look for new information for myself and do not wait to get it	750	0.29
• The to look for new information for myself and do not wait to get it from other people	.150	
 I can understand and try out technologies even if I don't learn them practically 	.686	
Component 9: Decu locumina		5 40

Component 8: Peer learning

•	I learn better from my fellow farmers than from extension service	.706
	providers	
•	The best venue for being trained is at the Agriculture training centre	588

After reverse-coding the negatively loaded items in *Table 9*, Analysis of Variance (ANOVA) with Tukey HSD Post Hoc Test was conducted to determine whether farmers in rural wards (Butsotso South and Kola-Muumandu Wards) and those in peri-urban wards (Shieywe and Mutituni-Ngelani Wards) differed significantly in their learning preferences. Results showed there were significant differences for concrete learning, timeliness of learning, solitary learning and abstract learning but famers did not differ in their need for repetitiveness of message, verification of information, learning through others, and peer learning as indicated in *Table 10*.

Learning preference	Sum of	df	Mean	\mathbf{F}	Sig.	
		Squares		Square		
i.Repetitiveness of	Between Groups	15.567	3	5.189	1.384	.250
message	Within Groups	506.116	135	3.749		
	Total	521.683	138			
ii. Concrete	Between Groups	65.452	3	21.817	5.171**	.002
learning	Within Groups	573.770	136	4.219		
	Total	639.221	139			
iii. Verification of	Between Groups	52.267	3	17.422	1.949	.125
information	Within Groups	1224.896	137	8.941		
	Total	1277.163	140			
iv. Timeliness of	Between Groups	178.211	3	59.404	8.168***	.000
learning	Within Groups	938.180	129	7.273		
	Total	1116.391	132			
v. Solitary	Between Groups	60.495	3	20.165	3.122*	.028
learning	Within Groups	872.095	135	6.460		
	Total	932.590	138			
vi. Learning	Between Groups	2.108	3	.703	.243	.866
through others	Within Groups	398.681	138	2.889		
	Total	400.789	141			
vii.Abstract	Between Groups	48.953	3	16.318	3.898**	.010
learning	Within Groups	577.695	138	4.186		
	Total	626.648	141			
viii. Peer learning	Between Groups	10.210	3	3.403	.911	.437
	Within Groups	515.487	138	3.735		
	Total	525.697	141			

Table 10 Analysis of Variance (ANOVA) for farmer learning preferences between Wards

*. Mean difference significant at $\rho < .05$, **. Mean difference significant at $\rho < .01$, ***. Mean difference significant at $\rho < .001$

When means were separated per administrative ward using Tukey HSD Post Hoc Test, statistically significant differences were noted for concrete learning, timeliness of learning and abstract learning but there were no statistically significant differences for solitary learning (see Table 11 in Appendix). Farmers in Shieywe, which is a peri-urban ward in Lurambi Sub-county preferred concrete learning more than farmers in Mutituni-Ngelani, a peri-urban ward in Machakos Sub-county (Mean difference=1.397, sig. .044). Likewise, farmers in Butsotso South ward, a rural ward in Lurambi Sub-county preferred concrete learning more than farmers in Kola-Muumandu Ward (Mean difference=1.341, sig. .024) and Mutituni-Ngelani (Mean difference=1.563, sig. .013). These differences could be attributed to differences in formal education levels. Farmers in Machakos Sub-county recorded higher education levels compared to those in Lurambi Sub-county, with Butsotso South Ward recording the lowest education levels (see Figure 8).

Overly, Lurambi Sub-county farmers were more sensitive to the time of the day learning was taking place than Machakos Sub county farmers. They preferred afternoons to mornings as training time probably to allow for time to attend to both domestic and farm chores. Specifically, farmers in Shieywe Ward were more sensitive to time of the day learning was taking place than farmers in Kola-Muumandu (Mean difference=2.972, sig. .000) and Mutituni-Ngelani wards farmers (Mean difference=2.536, sig. .002), preferring to learn in the afternoon than in the morning. Likewise, more farmers in Butsotso South Ward preferred learning in the afternoon than those from Kola-Muumandu Ward (Mean difference=1.736, sig. .034). Both of these are rural wards.

Mutituni-Ngelani Ward farmers recorded stronger preferences for abstract learning than farmers in Kola-Muumandu Ward (Mean difference=1.460, sig. .025) and Butsotso South Ward (Mean difference=1.560, sig. .010), both of them being rural wards. However, there were no statistically significant differences between farmers from Shieywe and Mutituni-Ngelani Wards in terms preference for abstract learning.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions of the Study

Based on the study objectives and findings, the following are the conclusions of the study:

- i. There are many studies that have been carried out on extrinsic and intrinsic factors affecting uptake of technologies, and the meta-analysis has provided empirical evidence that most of the studies focus on extrinsic rather than intrinsic factors.
- ii. Dissemination of agricultural technologies is informed by a number of learning frameworks and uses several channels of communication. This is taken into account by extension agents, who use a variety of methods to reach the farmers.
- iii. Farmers in Lurambi and Machakos sub-counties have specific preferences in terms of learning and channels of communication used to convey extension messages to them.
- There are significant discrepancies between extension agents' perceptions of how farmers in the Lurambi and Machakos sub-counties learn, and the farmers' indicated learning preferences.
- v. Farmer learning preferences are influenced by many factors including the environment, timing, peer learning, concrete experiences, repetitiveness of extension messages among others. These factors however, are not the same for all farmers.

5.2 Recommendations

In order to enhance adoption of agricultural technologies among small scale farmers, the study recommends the following:

- i. Extension service providers should adopt a dialogue approach with small scale farmers by giving them the opportunity to express their learning preferences and give feedback on effectiveness of extension methodologies used.
- ii. Extension agents should be sensitized or trained on how best to capture farmer learning needs and preferences so as to take these into account when delivering extension services.
- iii. Extension service providers should organize periodic short courses to sensitize and/or refresh the extension agents on factors affecting technology adoption, especially the intrinsic factors, and how to take into account, so as to ensure effective service delivery to farmers.

- iv. Policy makers and county governments should ensure proper funding and support for public extension services, so that extension agents can make more use of extension methods that have more potential to enhance uptake of agricultural technologies.
- v. Extension agents should be supported to increase the level use of ICT based extension methods, which have been found to have great potential in promoting agricultural technology adoption.
- vi. Researchers should be more intentional in focusing their studies on intrinsic factors affecting agricultural technology adoption, so as to create more understanding about their roles, and make recommendations on how best to promote technology adoption while taking them into account.

REFERENCES

- Abubakar, B. Z., Ango, A. K., Buhari, U. (2009). The roles of mass media in disseminating agricultural information to farmers in Birnin Kebbi local government area of Kebbi State: A case study of State Fadama II Development Project. <u>https://www.ajol.info/index.php/jae/article/view/53894/42441</u>
- AGRA (2017). Africa agriculture status report: The business of small scale agriculture in Subsaharan Africa. Nairobi, Kenya: Alliance for a Green Revolution in Africa (AGRA). Issue No. 5
- Ahmed, S., Sclafani, A., Aquino, E., Kala, S., Barias, L., & Eeg, J. (2017). Building student capacity to lead sustainability transitions in the food system through farm-based authentic research modules in sustainability sciences (FARMS). Elem Sci Anth. 2017:5:46. DOI: http://doi.org/10.1525/elementa.239
- Aker, J. C. (2011). Dial "A" for agriculture. A review of information communication technologies for agricultural extension in developing countries. *Journal of Agricultural Economics* 42(6) pp 631-647. <u>https://doi.org/10.10862.2011.00545.x</u> <u>111/j.1574</u>
- Andiema, E. (2014). Factors influencing adoption of energy-saving Maendeleo stove among small scale farmers households in Kapenguria Division, West Pokot County, Kenya. Unpublished MSc thesis, Egerton University.
- Andreasen, R. (2004). Integrating experiential learning into college of agriculture capstone courses: Implications and applications for practitioners. *NACTA J* 48(1): 52–57.
- Baiyegunhil, L. J. S. (2015). Determinants of rainwater harvesting technologies (RWHT) and adoption for home gardening in Msinga, KwaZulu-Natal, South Africa. https://www.ajol.info/index.php/wsa/article/view/110396/100130
- Bandura, A. (1986). *Social foundations of thought and action: A social cognitive theory*. Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Barham, B. L., Chavas, J. P., Fitz1, D, Salas, V. R & Schechter, L. (2014) Risk, learning, and technology adoption. <u>https://www.aae.wisc.edu/lschechter/learning.pdf</u>
- Beal, G.M. & Bohlem J.M. (n.d.) *The diffusion process*. http://ageconsearch.umn.edu/bitstream/17351/1/ar560111.pdf
- Bentley, T. (2012). *Learning beyond the classroom: Education for a changing world*. New York: Routledge.
- Biovision Africa Trust (2015). *The Ecological Organic Agriculture (EOA) Initiative in Africa Action Plan 2015-2020.* Prepared by Biovision Africa Trust on behalf of the EOA Continental Steering Committee, August 2015.

file:///I:/EOA%202016/ADDITIONAL%20LITERATURE/EOA_ACTION_PLAN_2 015-2020.pdf

- Botha, N. & Atkins, K. (2015). An assessment of five different theoretical frameworks to study the uptake of innovations. AgResearch Ltd, Ruakura Research Centre, East Street, Private Bag 3123, Hamilton, New Zealand. <u>http://ageconsearch.umn.edu/bitstream/98497/2/2005-5-</u> <u>assessment% 20of% 20five% 20different% 20theoretical% 20frameworks% 20to% 20stud</u> <u>y% 20the% 20uptake% 20of% 20innovations.pdf</u>
- Boyle, P.G. (1981). Planning better programs. New York: McGraw-Hill.
- Braun, B., McCoy, T., & Finkbeiner, N. (2014). Extension education theoretical framework with criterion-referenced assessment tools. College Park, MD: University of Maryland. <u>https://extension.umd.edu/sites/extension.umd.edu/files/_images/programs/insure/Theoretical%20Framework%205-22-14.pdf</u>
- Bruner, J.S. (1966). *Toward a theory of instruction*. Cambridge, MA: The Belknap Press of Harvard University.
- Chowdhury, A. H., Van Mele, P., & Hauser, M. (2011). Contribution of farmer-mediated video to capital assets building: Evidence from Bangladesh. *Journal of Sustainable Agriculture*, *35*(4), 408-435.
- Clarke, R (1999). A primer in diffusion of innovations theory. http://www.rogerclarke.com/SOS/InnDiff.html
- Combs, A.W. (1982). Affective education or none at all. Educational Leadership, 39(7), 494-497
- Cross, K.P. (1981). Adults as Learners. San Francisco: Jossey-Bass.
- Davis, K., Nkonya E. Kato D.A. Mekonnen M. Odendo R., Miiro ., & Nkuba J. (2010). Impact of farmer field schools on agricultural productivity and poverty in East Africa. World Development Journal. 40 (2) February 2012 pp 402-413. Elsevier Publishers <u>Https://Doi.Org/10.1016/J.Worlddev.2011.05.019</u>
- Davis, G. (2006). Avoiding the "rut" in program development and delivery: Improving our understanding of learning style preferences, *Journal of Extension* [On-line], 44(4) Article 4RIB1. Available at: <u>http://www.joe.org/joe/2006august/rb1.php</u>
- Ethical Trading Initiative (2005). Recommendations for working with smallholders: ETI Reports 2005. <u>https://s3-eu-west-</u> <u>1.amazonaws.com/www.ethicaltrade.org.files/shared_resources/eti_smallholder_guide</u> <u>lines_english.pdf?xpRp9zBwiIxHC1UR4hdu50LgXmY7PKT</u>
- Evenson, E.E. & Mwabu, G. (1998). The effects of agricultural extension on farm yields in Kenya. Center Discussion Paper No. 798, University of Nairobi. <u>http://ageconsearch.umn.edu/bitstream/28509/1/dp980798.pdf</u>

Fan S., Brzeska J., Keyzer M., & Halsema A. (2013). IFPRI Food Policy Report

- FAO (1990). A review of extension methodologies in aquaculture. Rome, FAO.
- FAO (2006). Farmer field schools (FFS) manual: guidelines for the implementation of a farmer field school. <u>http://www.fao.org/3/a-ap094e.pdf</u>
- FAO (2017). State of food and agriculture 2017: Leveraging food systems for inclusive rural transformation. Rome, FAO. <u>www.fao.org/3/a-I7658e.pdf</u>
- Farinde, A. J. (1991): Effectiveness of the extension teaching methods used in disseminating improved agricultural technologies in Lagos State. Unpublished M. Phil Thesis, Obafemi Awolowo University, Ile-Ife.
- Franz, N. (2007). Adult education theories: Informing cooperative extension's transformation. *Journal of Extension*, 45. <u>http://www.joe.org/joe/2007february/a1.php</u>
- Franz, N.K.; Piercy, F., Donaldson, J., Westbrook, J.; & Richard, R. (2010). "Farmer, agent, and specialist perspectives on preferences for learning among today's farmers". *Extension* and Outreach Research and Scholarship. Paper 1. http://lib.dr.iastate.edu/extension_research/1
- Gandhi, R., Veeraraghavan, R., Toyama, K. & Ramprasad, V. (2007). Digital Green: Participatory video for agricultural extension. Paper presented at the 2007 International Conference on Information and Communication Technologies and Development. Bangalore, India
- Gido, E.O. (2012). Factors affecting adoption and intensity of use of organic soil management practices in maize production in Bungoma County, Kenya. Unpublished Masters thesis, Egerton University, Kenya.
- Gitu, G.W., Onyango, C.A. & Obara, J.J. (2015). Selected factors affecting adoption of improved finger millet varieties by small scale farmers in Mogotio District, Kenya. Unpublished thesis, Egerton University, Kenya.
- Government of Kenya (2012). *National Agriculture Sector Extension Policy*. Agriculture Sector Coordinating Unit, Nairobi.
- Government of Kenya (2017). *Basic education curriculum framework*. Nairobi, Kenya Institute of Curriculum Development.
- Gülbahar, Y. & Alper A., (2011). Learning preferences and learning styles of online adult learners. In A. Méndez-Vilas (Ed.) *Education in a technological world: communicating current and emerging research and technological efforts*, pp 270-278. Formatex Research Center, Badajoz, Spain
- Japanese International Cooperation Agency (JICA) (2008). *Agricultural Extension Methodology:* A *Reference Manual*. The Project for Strengthening Support System Focusing on

Sustainable Agriculture in the Jordan River Rift Valley. Agricultural Support Assist Project (ASAP).

- Kavoi, J. M., Mwangi, J.G., & Kamau, G.M. (2014). Factors related to the low uptake of technologies and innovations in semi-arid areas of lower Eastern Kenya.
 <u>https://www.researchgate.net/publication/270512505_CHALLENGES_FACED_BY_SMALL_LAND_HOLDER_FARMER_REGARDING_DECISION_MAKING_IN_I_NNOVATIVE_AGRICULTURAL_DEVELOPMENT_AN_EMPIRICAL_ANALYSI_S_FROM_KENYA</u>
- Kenya National Bureau of Statistics [KNBS] (2014). Kenya demographic and health survey (KDHS) 2014. Nairobi, KNBS.
- Khatete, K.W., Matuli, H.M. & Bor, E.K. (2016). Factors influencing adoption of One-Acre Fund project in Kanduyi Sub-county, Kenya. *Journal of Agricultural Research* 2 (8)
- Kinyangi, A.A. (2014). Factors influencing the adoption of agricultural technology among smallholder farmers in Kakamega North Subcounty Kenya. Unpublished masters research project, University of Nairobi.
- Knowles, M.S. (1973). *The adult learner: A neglected species* (2nd ed.). Houston: Gulf Publishing Company.
- Knowles, M. S. (1984). Andragogy in Action. San Francisco: Jossey-Bass.
- Kolb, A. & Kolb, D. (2012). Experiential learning theory. In: *Encyclopedia of the Sciences of Learning*. Springer US, pp. 1215–1219.
- Kolb, D. (2014). *Experiential learning: Experience as the source of learning and development*. 2nd ed. Pearson Education LTD.
- Lieblein, G., Breland, T. A., Francis, C. & Østergaard, E. (2012). Agroecology education: action-oriented learning and research. *The Journal of Agricultural Education and Extension* 18(1): 27–40, DOI: <u>http://dx.doi.org/10.1080/1389224X.2012.638781</u>
- Lieblein, G., Breland, T. A., Østergard, E., Salomonsson, L & Francis, C. (2007). Educational perspectives in agroecology: Steps on a dual learning ladder toward responsible action. NACTA, March 2007: 37–44.f
- Makarova, E. A. (2014). Role of individual learning pathways in non-threatening teaching and learning environment development. Universal Journal of Educational Research 2(5): 406-413 DOI: 10.13189/ ujer.2014.020502
- Merriam, S.B., Caffarella, R.S., & Baumgartner, L.M. (2007). *Learning in adulthood: A comprehensive guide* (3rd ed.). San Francisco: Jossey-Bass.
- Mezirow, J. (Ed.) (2000). *Learning as transformation: Critical perspectives on a theory in progress.* San Francisco, CA: The Jossey-Bass Higher and Adult Education Series.

- Mshenga P. M., Saidi M., Nkurumwa A.O., Magogo J.R. & Oradu S.I. (2016). Adoption of African indigenous vegetables into agro-pastoral livelihoods for income and food security in Kenya. *Journal of agri-business in developing and emerging economies*. Vol. 6 (2) pp 110-126.
- Muyanga, M. & Jayne, T.S. (2006). Agricultural Extension in Kenya: Practice and Policy Lessons. http://www.tegemeo.org/images/downloads/publications/working_papers/WP26.pdf
- NALEP (2011). A guide to effective extension methods for different situations. http://www.nafis.go.ke/wp-content/uploads/2012/05/extension-methods.pdf
- Nambiro, E., Omiti, J., & Mugunieri, L. (2006). Decentralization and access to agricultural extension services in Kenya. Contributed poster prepared for presentation at the International Association of Agricultural Economists Conference, Gold Coast, Australia. August 12-18, 2006. http://ageconsearch.umn.edu/bitstream/25246/1/pp060168.pdf
- Nato, G.N., Shauri, H.S., & Kadere, T.T. (2016). Influence of social capital on adoption of agricultural technologies among beneficiaries of African Institute for Capacity Development training programmes in Kenya. <u>http://www.ijsstr.com/data/frontImages/1.pdf</u>
- Ng, W.H. & Fieldman, D.C. (2009). How broadly does education contribute to job performance? *Personnel Psychology*, 62, 89-134. <u>https://homepages.se.edu/cvonbergen/files/2013/01/How-Broadly-Does-Education-Contribute-to-Job-Performance.pdf</u>
- Nutley, S., Davies, H. & Walter, I. (2002). Working paper 10 conceptual synthesis 1: Learning from the diffusion of innovations. ESRC UK Centre for Evidence Based Policy and Practice: Research Unit for Research Utilisation Department of Management University of St Andrews. <u>https://www.kcl.ac.uk/sspp/departments/politicaleconomy/research/cep/pubs/papers/as sets/wp10.pdf</u>
- Oakley, P. & Garforth, C. (1985). *Guide to extension training*. Rome, FAO. http://www.fao.org/3/a-t0060e.pdf
- Obayelu, A., Ajayi, O., Oluwalana, E., & Ogunmola, O. (2017). What does literature say about the determinants of adoption of agricultural technologies by small scale farmers? *Agri Res & Tech: Open Access Journal*. 2017; 6(1): 555676. DOI: 10.19080/ARTOAJ.2017.06.555676.
 https://juniperpublishers.com/artoaj/pdf/ARTOAJ.MS.ID.555676.pdf
- PELUM Kenya (2011). The Ecological Organic Agriculture programme. Presented by Maryleen Micheni at the seminar on The Future of EU-ACP Relations in a Changing Environment. Organized by Concord Cotonou Working Group at Le Maison ded

Association Internationale, Brussels, Belgium. <u>http://pelum.net/wp-</u> content/uploads/2011/10/The-Ecological-Organic-Agriculture-EOA-Programme.pdf

- Rehman, F., S. Muhammad, I., Ashraf, & S. Hassan (2011). Factors affecting the effectiveness of print media in the dissemination of Agricultural information. Sarhad J. Agric. 27(1): 119-124.
- Rogers, E. M. (1995). *Diffusion of innovations*. Reviewed by Greg Orr (2003). https://web.stanford.edu/class/symbsys205/Diffusion%20of%20Innovations.htm
- Sadoulet, E. (2016). Review of theories of learning for adopting. Retrieved 8th February 2018 from <u>http://www.ferdi.fr/sites/www.ferdi.fr/files/publication/fichiers/p163-</u> <u>sadoulet.pdf</u>
- Sani L., Boadi B.Y., Oladokun O. & Kalusopa T. (2014). The Generation and Dissemination of Agricultural Information to Farmers in Nigeria: A Review. IOSR *Journal of Agriculture and Veterinary Science*. Vol. 7(2) Ver. I (Mar-Apr. 2014), PP 102-111 www.iosrjournals.org
- Meijer, S.S., Catacutan, D., Ajayi, O.C., Sileshi G.W., & Nieuwenhuis, M. (2014). The role of knowledge, attitudes and perceptions in the uptake of agricultural and agroforestry innovations among smallholder farmers in sub-Saharan Africa, *International Journal* of Agricultural Sustainability, 13:1, 40-54, DOI: 10.1080/14735903.2014.912493
- Sewell, A. M., Hartnett, M. K., Gray, D. I., Blair, H. T., Kemp, P. D., Kenyon, P. R., Morris S. T., & Wood B. A. (2017). Using educational theory and research to refine agricultural extension: affordances and barriers for farmers' learning and practice change. *The Journal of Agricultural Education and Extension*, 23:4, 313-333, DOI: 10.1080/1389224X.2017.1314861
- Simtowe, F. (2011). Determinants of agricultural technology adoption: the case of improved pigeon pea varieties in Tanzania, Munich Personal RePEc Archive MPRA Paper No. 41329, posted 4th October 2012 10:40 UTC. <u>http://mpra.ub.uni-muenchen.de/41329/</u>
- Swanson, B.E., Bentz, R.P., & Sofranko A.J. (1997). *Improving agricultural extension. A Reference Manual.* Rome, FAO.
- United Nations (2015) Transforming Our World: The 2030 Agenda for Sustainable Development. A/RES/70/1 <u>https://sustainabledevelopment.un.org/content/documents/21252030%20Agenda%20f</u> <u>or%20Sustainable%20Development%20web.pdf</u>
- Van den Ban A. W. (1998). Supporting farmers, decision making process by agricultural extension. *Journal of Extension Systems*. <u>http://library.wur.nl/WebQuery/wurpubs/fulltext/27801</u>

Vygotsky, L. & Cole, M. (1978). *Mind in society*. 1st Ed. Cambridge: Harvard University Press.

- Zimmerman, M. A. (2000). *Handbook of community psychology*. Julian Rappaport and Edward Seidman (Eds). New York, Kluwer Academic/Plenum Publishers.
- Zimmerman, M.A. & Warschausky, S. (1998). Empowerment theory for rehabilitation research: Conceptual and methodological issues. *Rehabilitation Psychology*, 43, 3-16. <u>http://dx.doi.org/10.1037/0090-5550.43.1.3</u>

APPENDIX 1

Meta-Analysis of Small Scale Farmer Learning Pathway Preferences and Agricultural Technology Uptake Studies

Ser.		Year, Author			Explanatory Va	ariables For
No.		and Publisher	Publication	Major Findings On Technology	Technology Uptake	
	Source/Link		Title	Uptake	Extrinsic	Intrinsic
1.	Agroforestry	2002.	Determinants of	Farmer characteristics that	-Gender	
	Systems, Volume	Adesina, A.A.	farmers'	influenced adoption included the	-Extension	
	55, Issue 2 pp	& Chianu, J.	adoption and	gender of the farmer, contact with	-Experience	
	99-112		adaptation of	extension agents, years of	-Tenancy	
	https://link.sprin		alley farming	experience with agro-forestry and	status	
	ger.com/article/1		technology in	tenancy status in the village.	-Extent of	
	0.1023/A:10205		Nigeria.	Economic factors included the	problem	
	<u>56132073</u>			extent of village land pressure,	-Importance of	
				extent of erosion intensity, village	livestock	
				fuel wood pressure, importance of	-Distance to	
				livestock as an economic activity in	urban centre	
				the village and the distance of the		
				village locations from urban centers		

2.	Agriculture, Ecosystems and Environment. Vol.80, Issue 3, Sept. 2000 pp 255-265 http://www.scie ncedirect.com/sc ience/article/pii/ S016788090000 1523	2000 Adesina A.A., Mbila D, Nkamleu G.B., & Endamana D.	Econometric analysis of the determinants of adoption of alley farming by farmers in the forest zone of Southwest Cameroon.	Male farmers were found to be more likely to adopt than women. Adoption was higher for farmers with contacts with extension agencies working on agroforestry technologies. Adoption was higher for farmers belonging to farmers' groups. Adoption was lower for farmers in areas with very high population pressure. Adoption was higher for farmers in areas facing fuel wood scarcity.	- Gender - Extension - Group membership -Natural resource constraints	
3.	Agriculture Economics 13 (1995) 1-9 https://pdfs.sema nticscholar.org/8 869/14c82ec365 aa92cb3659c55b 2165e72ceb68.p df	1995 Adesina AA, & Baidu-Forson J.	Farmers' perceptions and adoption of new agricultural technology: evidence from analysis in Burkina Faso and Guinea, West Africa	The results provided a strong case for future adoption studies to expand the range of variables used away from the broad socio-economic, demographic and institutional factors to include farmers' subjective perceptions of the characteristics of new agricultural technologies.		-Farmer's subjective perception of the characterist ics of new agricultural technologie s
4.	Agricultural Economics, 9 (1993) 297-311 Elsevier Science Publishers <u>http://ageconsear</u> <u>ch.umn.edu/bitst</u> ream/173225/2/a <u>gec1993v009i00</u> <u>4a002.pdf</u>	1993 Adesina A.A. & Zinnah M.M.	Technology characteristics, farmers' perceptions and adoption decisions: A Tobit model application in Sierra Leone	The estimated Tobit model results showed that farmer perceptions of the technology-specific attributes of the varieties are the major factors determining adoption and use intensities.		-Farmer perceptions about technology -specific attributes

5.	Taylor and	2014	Impact of	Results showed plausible evidence	-Membership
	Francis online	Adong', A.	household	of the positive impact of	in groups
	Agriculture	U V	membership of	households' membership of farmers'	
	Economics		farmer groups	groups on the adoption of improved	
	Research, Policy		on the adoption	technologies, particularly in the	
	and Practice in		of agricultural	adoption of techniques such as	
	Southern Africa,		technologies in	making use of improved seeds,	
	53(2), 108-136		Uganda:	organic fertilizer and improved	
	2014		Evidence from	livestock breeds.	
	https://www.tan		the Uganda		
	dfonline.com/do		census of		
	<u>i/abs/10.1080/03</u>		agriculture		
	<u>031853.2014.91</u>		2008/09.		
	<u>5485</u>				
6.	Journal of	2012	Adoption of	The results showed that farm size,	-Farm size
	Biology,	Akudugu, M.	modern	expected benefits from technology	-Expected
	Agriculture and	A., Guo, E.	agricultural	adoption, access to credit and	benefits from
	Healthcare,	&Dadzie, S. K.	production	extension services are the factors	technology
	2(3), 1-13		technologies by	that significantly influence	-Access to
	http://www.iiste.		farm	technology adoption decisions of	credit
	org/Journals/ind		households in	farm households in the study area	-Extension
	ex.php/JBAH/art		Ghana: What		services
	icle/view/1522		factors		
			influence their		
			decisions?		

~	TT 11'1 1	2014	E (•	
/.	Unpublished	2014	Factors	The results demonstrated that the	- Age	
	MSc thesis,	Andiema E.C.	Influencing	age of the respondent, ability of the	- Technology	
	Egerton		Adoption Of	Maendeleo stove technology to	characteristi	
	University,		Energy-Saving	conserve energy, contact with	CS	
	Kenya		Maendeleo	extension and operatability of the	- Contact with	
			Stove among	Maendeleo stove technology	extension	
			Small Scale	increased the probability of adoption		
			Farmers	by users.		
			Households in			
			Kapenguria			
			Division, West			
			Pokot County,			
			Kenya.			
			5			
8.	International	2015	Analysis of	Environmental factors eg. area under	- Area under	
	Journal of	Armand, M.,	factors affecting	cultivation, access to water, water	cultivation	
	Agricultural	Afrakhteh, H.	adoption and	quality, household labour,	- Household	
	Management	&Bozayeh, F.	application of	employment diversity and extension	labour	
	and	A.	sprinkler	training were found to affect	- Employment	
	Development.		irrigation by	adoption of sprinkler irrigation by	diversity	
	5(2), 89-99,		farmers in	farmers	- Extension	
	2015		Famenin		training	
	http://www.sid.ir		County, Iran.		B	
	/en/VEWSSID/J		· · · · · ·			
	pdf/102532015					
	0204.pdf					

9.	American Journal of Experimental Agriculture. 3(2): 277-292 <u>http://www.jour</u> <u>nalrepository.or</u> <u>g/media/journals</u> /AJEA_2/2013/ Mar/136297430	2013 Baffoe-Asare R., Danquah J.A. andAnnor- Frempong F.	Socioeconomic Factors Influencing Adoption of CODAPEC and Cocoa High- tech Technologies among Small Holder Farmers	Results indicated that experience, training, age of household head, household size and social capital as the key variables that positively influence decision of farmers to adopt Cocoa Pest and Disease Control (CODAPEC) and Cocoa High-Tech Technology packages.	-Experience -Training -Age of household head -Household size -Social capital	
	<u>3-</u> <u>Asare322012AJ</u> <u>EA1969.pdf</u>		in Central Region of Ghana			
10	Agricultural Economics 20 (1999); 231- 239) http://ageconsear ch.umn.edu/bitst ream/174978/2/a gec1999v020i00 3a004.pdf	1999 Baidu-Forson J.	Factors influencing adoption of land-enhancing technology in the Sahel: lessons from a case study in Niger	Higher percentage of degraded farmland, extension education, lower risk aversion, and the availability of short-term profits were found to be important for increasing the adoption and intensity of use of improved 'tassa' and half-crescent shaped earthen mounds. Age and attitudes to differential gains between farm and non-farm income showed no influence on adoption.	 State of the farmland Extension education Lower risk aversion Availability of short term profits 	
11	http://ageconsear ch.umn.edu/bitst ream/44111/2/7 2_3.pdf	2006 Bayard B., Jolly C.M. and Shannon D.A.	The Adoption and Management of Soil Conservation Practices in Haiti: The Case of Rock Walls	Results showed that personal characteristics of farmers (Age and education), institutional factors, such as local group membership, training in soil conservation, per capita household income and size of farm influence soil conservation adoption.	-Farmer's age and education -Local group membership -Training -Farm size -Per capita household income	

12	Water SA, 41(1),	2015	Determinants of	Gender, age, education, income,	-Gender,	Perception/
	33-39.	Baiyegunhil, L.	Rainwater	social capital, contact with extension	-age,	attitude
	https://www.ajol	J. S.	Harvesting	agent and perception/attitude	-education, -	towards the
	.info/index.php/		Technologies	towards RWHT are statistically	income,	technology
	wsa/article/view/		(RWHT)	significant in explaining farmers'	-social capital,	
	<u>110396/100130</u>		adoption for	adoption of RWHT in the study area.	-contact with	
			home gardening		extension	
			in Msinga,		agent	
			KwaZulu-Natal,			
			South Africa.			
13	http://citeseerx.i	Bonabana-	Assessing	Farmers' participation in on-farm	-Farmer	
	st.psu.edu/viewd	Wabbi J.	Factors	trial demonstrations, accessing	participation in	
	<u>oc/download?do</u>		Affecting	agricultural knowledge through	on-farm trials	
	<u>i=10.1.1.955.553</u>	2002	Adoption of	researchers, and prior participation	-Access to	
	<u>9&rep=rep1&ty</u>		Agricultural	in pest training were associated with	information	
	<u>pe=pdf</u>		Technologies:	increased adoption of most IPM	and training	
			The	practices.	-Farm labour	
	Masters thesis,		Case of	Farm labor availability positively	availability	
	Virginia Tech		Integrated Pest	influenced growing of improved		
	University		Management	groundnut variety Igola-1.		
			(IPM) in Kumi	- The most influential variables in		
			District, Eastern	celosia adoption were		
			Uganda	institutional/informational factors,		
				including farmers' access to		
				information from researchers and		
				training in pest control activities.		
				- Farmers' participation in on-farm		
				trial demonstrations had a positive		
				influence on <i>celosia</i> technology		
				adoption.		

14	http://lib.dr.iasta	Bwambale N.	Farmers'	The study found that the relative	-Technology
	te.edu/cgi/viewc		knowledge,	advantage of a practice, ability to	characteristics
	ontent.cgi?articl	2015	perceptions, and	observe the success of the practice	i.e. relative
	e=6238&context		socioeconomic	before adoption (either from fellow	advantage,
	<u>=etd</u>		factors	small scales or through	observability
			influencing	experimentation), and compatibility	and
	Masters thesis,		decision making	of the practice with existing farm	compatibility;
	Iowa State		for integrated	operations played a significant role	-
	University		soil fertility	in adoption.	Trustworthines
	Digital		management		s of the
	Repository,		practices in		information
	2015		Masaka and		source.
			Rakai districts,		
			Central Uganda		
15	https://pdfs.sema	2001	A conceptual	The purpose of the study was to	-Farmer and
	nticscholar.org/9	Chilonda P.,	framework for	gain an improved understanding of	farm specific
	<u>9a7/cd08d1ceb4</u>	Huylenbroeck	the economic	the behaviour and decision-making	characteristics
	fe6abcd2670900	G.	analysis of	processes of small-scale farmers,	-Economic
	<u>13035b189a41.p</u>		factors	-The authors propose a conceptual	factors
	<u>df</u>		influencing	model including variables that relate	-Institutional
	Revue		decision-	to characteristics specific to small-	setting
	scientifique et		making of	scale farmers and farms, economic	-Biophysical
	technique		small-scale	factors, institutional setting and	factors
	(International		farmers in	biophysical factors.	
	Office of		animal health		
	Epizootics) (RE		management		
	V SCI TECH				
	OIE) 2001, 20				
	(3), 687-700				

16	Indian Research Journal of ExtensionEducat ion 7 (1) January 2007 <u>http://www.seea.</u> org.in/vol7-1- 2007/12.pdf	2007 Deshmukh P.R., Kadam R.P. and Shinde V.N.	Knowledge and Adoption of Agricultural Technologies in Marathwada	Adoption of majority of respondents of various agricultural technologies was found to be very low. -Most of the respondents reported that they did not have adequate information regarding the agricultural technologies -Others who had knowledge reported that their main constraints were; availability of seed, high cost and long distance travaled to got the	-Availability of the technology -Cost of technology -Access in terms of distance	Inadequate information on technology
17	Journal, Bangladesh Agricultural University 13(2): 291–298, 2015 http://ageconsear ch.umn.edu/bitst ream/235292/2/1 7.%20JBAU%2 0754-15.pdf	2015 Farid K.S., Tanny N.Z., and P. K. Sarma P.K.	Factors affecting adoption of improved farm practices by the farmers of Northern Bangladesh	The results showed that farmers' level of education, training status, communication score, and land holdings have strong positive relation with adoption of improved farm practices. On the other hand, age, involvement with cooperative society, and NGO affiliation did not have significant relation with adoption.	- Level of education -Training status -Exposure to extension information -Size of land holding	
18	Agroforestry Systems (47), 305-321, 1999. http://citeseerx.i st.psu.edu/viewd oc/download?do i=10.1.1.459.632 9&rep=rep1&ty pe=pdf	1999 Franzel, S.,	Socioeconomic factors affecting the adoption potential of improved tree fallows in Africa.	Principal factors associated with acceptability include past perception of soil fertility problems, past use of measures for improving soil fertility, current fallowing, economic importance of annual cropping, and wealth level.	 Past experience Wealth level Current practices Economic importance of technology 	Perception of soil fertility problems
19	Unpublished Masters thesis,	2012 Gido E.O.	Factors affecting	Factors found to affect adoption were:	-Age -Farm size	
	Egerton		adoption and	-Age	-Farming	
----	---------------------------	----------------	------------------	--	----------------	--
	University,		intensity of use	-Farm size	experience	
	-		of organic soil	-Farming experience	-Education	
			management	-Education level of household heads	level of	
			practices in	-Training	household	
			maize	-Farm distance from homestead	heads	
			production in	-Off-farm income	-Training	
			Bungoma	-Occupational options	-Farm distance	
			County, Kenya		from	
					homestead	
					-Off-farm	
					income	
					-Occupational	
					options	
20	Unpublished	2015	Selected factors	Results showed that house hold land	- Land	
	Masters thesis,	Gitu G.W.,	affecting	control system, gender of the house	ownership	
	Egerton	Onyango C. and	adoption of	head, age of the farmers and	- Gender	
	University	Obara J.J	improved	education level significantly affected	- Age	
	<u>http://ir-</u>		Finger millet	the adoption	- Education	
	library.egerton.a		varieties by		level	
	<u>c.ke/jspui/bitstre</u>		small scale			
	<u>am/123456789/6</u>		farmers in			
	<u>79/1/Grace%20</u>		Mogotio			
	Waithira%20Git		district, Kenya			
	<u>u.pdf</u>					

21	Iournal on	2015	Factors	Results revealed that plat size	-Plot size	
21	Feonomic and	Ifonnyi A	Informing the	farmer's age education status and	Farmer's ago	
	Sustainable	Oijelto I O	Small scale	autor s age, curcation status, and	-Parmer's age	
	Development	Udanci II E	Sillali scale	trainings had significant positive	-Education	
	Development.	Udensi U. E.,	Pariners	influences on adaption and use	Status Warlashana	
	<i>V01.10 (22) 2013</i>	and Tarawan G.	Decision to	influences on adoption and use.	-workshops	
	pp 94-111		Adopt		and trainings	
	www.iiste.org/J		and Use			
	ournals/index.p		Improved			
	hp/JEDS/article/		Cassava			
	download/27354		Varieties in the			
	<u>/28044</u>		South-east Area			
			of Nigeria			
22	http://edepot.wu	2012	Assessing the	The study revealed that high cost of	Cost of	inadequate
	<u>r.nl/298444</u>	Inambao C.N.	Factors	acaricide, inadequate water	technology	knowledge
	A masters		influencing	resources and the seasonality of ECF	-Literacy level	leading to
	research project		Farmers'	occurrence influenced farmer's	-Availability of	inability to
	paper, Van Hall		Decisions in the	decision making in carrying out	labour	apply
	Larenstein		Control of East	dipping and spraying.	-competition	technology
	University of		Coast Fever in	These were compounded by low	with household	
	Applied		Kafue, Zambia	levels of literacy among farmers	needs	
	Sciences			attributed to the farmers' inability to	-Household	
				use the correct strength of acaricide	economic	
				Internal factors which influenced	factors	
				their decision on ECF control. These	-Policy	
				were: availability of labour.	-availability	
				especially male labour, competition	and	
				for water use in the house hold and	accessibility of	
				household economic factors	support	
				(constraints)	services e a	
				The external factors were found to	veterinary	
				be distance to the din tank ECE	services	
				policy, votoringry services	Broad of outtle	
				poincy, veterinary services,	-Diecu of caule	
				seasonality and the breed of the		
				cattle owned.	(susceptibility)	

23	http://www.trop	2005	Effects of	Farmers' perceptions of the varietal	Education of	-Farmers'
	entag.de/2005/a	Joshi G. and	Farmers'	characteristics such as pest	the decision	perception
	bstracts/full/310.	Pandey S.	Perceptions on	resistance, drought tolerance and	maker	on varietal
	<u>pdf</u>		the Adoption of	suitability for making special	-Experience in	characterist
	A paper		Modern Rice	products were important in	rice farming	ics
	presented at the		Varieties in	determining technology choices in	Availability of	
	DeutscherTrope		Nepal	the areas where current adoption	extension	
	ntag 2005			rates are quite highIt was also	services	
	Stuttgart-			found that the farms and farmers'		
	Hohenheim,			specific variables such as education		
	October 11-13,			of the decision maker and his/her		
	2005			experience in rice farming, and		
	Conference on			availability of extension services		
	International			have significant effect on adoption		
	Agricultural			of modern varieties.		
	Research for					
	Development					
24	African Journal	2016	Why is	The study found that factors that	-Lack of seed	-Lack of
	of Agriculture	Kabwe G.,	adoption of	affect adoption included: Lack of	-Land size	interest
	Research Vol 11	Bigsby H.,	agroforestry	seed, limited land size, method of	-Inappropriate	
	(46) pp 4704-	and Cullen R.	stymied in	ploughing, lack of interest and	farming	
	4717		Zambia?	access to extension services.	methods	
	http://www.acad		Perspectives		-Access to	
	emicjournals.org		from the		extension	
	/journal/AJAR/a		ground-up		services	
	rticle-full-text-					
	pdf/F2E33CD61					
	<u>705</u>					

25	http://ageconsear	2009	Factors	Statistical analysis showed an	-Availability of	-
	ch.umn.edu/bitst	Kabwe G.,	influencing	association between adoption of	seed	Knowledge
	ream/97135/2/20	Bigsby, H.	adoption of	both improved fallows and biomass		of the
	09_9_Zambian	& Cullen, R.	agro-forestry	transfer technologies with		technology
	%20Agroforestr		among small	knowledge of the technology,		-Having
	y%20Adoption_		scale farmers in	availability of seed, and having the		appropriate
	KabweG.pdf		Zambia	appropriate skills. In addition some		skills
	Paper presented			household characteristics are found		
	at the 2009			to be linked to the incidence of		
	NZARES			adoption. However, the strength of		
	Conference			association between these variables		
	Tahuna			is low, giving an indication that		
	Conference			there might be other factors at play		
	Centre – Nelson,			limiting agro-forestry adoption.		
	New Zealand.					
26	http://www.tzonl	1999	Factors	Technology related factors i.e.	-Labour	
	ine.org/pdf/facto	Kalineza	Influencing	labour requirement and perceived	requirements	
	rinfluencingadop	H.M.M., Mdoe	adoption of Soil	technology benefits, obtaining	-Perceived	
	tionofsoil.pdf	N.S.Y., Mlozi	Conservation	knowledge through extension and	technology	
		M.R.S.	Technologies in	training, and having secure land	benefits	
	Untitled Online		Tanzania: A	ownership were found to have a	-Extension	
	Gateway		Case Study in	positive influence on adoption of	-Land	
			Gairo	soil conservation technologies	ownership	
					status	
27	https://www.rese	2014	Challenges	-Some of the technologies	-adequacy of	
	archgate.net/pub	Kavoi J. M.,	Faced By Small	disseminated did not consider the	information on	
	lication/2705125	Mwangi J.G.,	Land Holder	farmers' immediate needs or the	Technology	
	05_CHALLEN	&Kamau G.M.	Farmer	prevailing circumstances.	characteristics	
	<u>GES_FACED_B</u>		Regarding	-Farmers need accurate information	-provision of	
	Y_SMALL_LA		Decision	about technologies	technology	
	ND_HOLDER_		Making In	Their immediate needs and	with several	
	FARMER_REG		Innovative	circumstances need to be taken into	utilization	
	ARDING_DECI		Agricultural	account	options	
	SION_MAKIN		Development:		-prevailing	

	G_IN_INNOVA		An Empirical		needs and	
	TIVE_AGRICU		Analysis From		circumstances	
	LTURAL_DEV		Kenya		of the farmers	
	ELOPMENT_A		•			
	N_EMPIRICAL					
	ANALYSIS_F					
	ROM_KENYA					
28	Agriculture and	2014	Factors Related	The study found that weak linkages,	-Institutional	
	Soil Sciences	Kavoi J. M.,	to the Low	breach of contracts and distorted	factors such as	
	Vol 1 (2) pp	Mwangi J.G., &	Uptake of	farm gate and market prices	Joint activity	
	012-021	Kamau G.M.	Technologies	negatively affected the uptake of	planning and	
	https://www.rese		and Innovations	poverty reduction joint initiatives.	monitoring by	
	archgate.net/pub		in Semi-Arid		stakeholders, -	
	lication/2705126		Areas of Lower		Stronger	
	19_Factors_Rela		Eastern Kenya		linkages,	
	ted_to_the_Low				-Openness and	
	<u>Uptake_of_Tec</u>				trust	
	hnologies_and_I					
	nnovations_in_S					
	<u>emi-</u>					
	Arid_Areas_of_					
	Lower_Eastern_					
	<u>Kenya</u>					
29	http://edepot.wu	2015	Understanding	-Limited access to farm resources	-Access to	
	<u>r.nl/345252</u>	KebebeE.G.	factors affecting	-Differentials in potential welfare of	farm resources	
			technology	the technology	-Technology	
	PhD thesis,		adoption in	-Lack of effective and reliable	characteristics	
	Wageningen		small scale	supply chains for inputs and outputs	-Physical	
	University		livestock	-Inadequate physical infrastructure	infrastructure	
			production	-Weak institutions and policies	-Strength of	
			systems in		institutions and	
			Ethiopia		policies	
30	IJRDO-Journal	2016	Factors	Adoption is affected by	-Political	Farmers

	of Agricultural	Khatete K.W.,	influencing	Governmental and political forces,	factors	perception
	Research	Matuli H.M.,	adoption of One	farmers' perception of new projects.	-Age of farmer	1 1
	Vol.2. Issue-8,	Bor E.K.	acre fund	age of the farmers, extension agents'	-Extension	
	2016		project in	contact with the farmers	contact	
	http://www.ijrdo		Kanduyi Sub-			
	.org/Internationa		county, Kenya			
	l-Journal-of-					
	Research-&-					
	Development-					
	Organisation-					
	pdf/Agriculture					
	<u>%20and%20Res</u>					
	earch/August-					
	2016/Agricultur					
	al%20Research-					
	August-5.pdf					
31	http://erepositor	2014	Factors	Factors found to have positive and	-Capital	
	<u>y.uonbi.ac.ke/bit</u>	Kinyangi A.A.	Influencing The	significant association with adoption	-Credit	
	stream/handle/1		Adoption	included:	-Extension	
	<u>1295/76086/Kin</u>		of Agricultural	-capital and credit facilities (at	services	
	<u>yangi_Factors%</u>		Technology	varying degrees); extension training;	-Market	
	20influencing%		among Small	market availability; farmers'	availability	
	20the%20adopti		Holder Farmers	education levels; gender and age	-Education	
	<u>on%20of%20agr</u>		In		level	
	icultural%20tech		Kakamega		-Gender	
	nology%20amon		North Sub -		-Age	
	<u>g%20small</u>		County, Kenya			
	scale%20farmer					
	s%20.pdf?seque					
	<u>nce=1</u>					
	A masters					
	research project,					
	University of					

	Nairobi					
32	Unpublished Masters thesis, Egerton University, Njoro, Kenya	2014 Kyambo, O.M.	Determinants of adoption of improved amaranthas among small scale farmers of Buuri- subcounty, Meru county	Factors found to influence adoption were: Age of the chief decision maker, Farm distance from the homestead of the farmer, farmer's perception Farmer's ability to access credit Type of land ownership and extension agents contact with the farmers were found to be positively associated with the decision to adopt	-Age of household head -Farm distance -Access to credit -Land tenure -Extension contact	Farmer's perception
33	Food Policy Vol 32 (4) pp 515- 536 http://www.scie ncedirect.com/sc ience/article/pii/ S030691920600 1011	2006 Marenya, P. Barett C.,	Household- level determinants of adoption of improved natural resources management practices among small scale farmers in western Kenya	Determinants of adoption included: Resource constraints, size of farm, value of livestock, off-farm income, family labor supply, education, and, gender of household head	-Resource constraints -Gender of household head -Farm size -Value of livestock -Off-farm income -Family labour -Education	
34	Sustainable Agriculture Research; Vol. 3, No. 1; 2014 Pp 24-36 file:///C:/Users/ <u>CODAGED/Do</u> wnloads/32958- <u>111343-2-</u>	2014 Martey E., Wiredu, A.N., Etwire P. M., Fosu M., Buah S. S. J., Bidzakin J., Ahiabor B.D.K., & Kusi	Fertilizer Adoption and Use Intensity Among Small scale Farmers in Northern Ghana: A Case Study of the AGRA Soil	Adoption of fertilizer technology was found to be determined by age, nativity, farm size, access to credit, and distance to agricultural office.	-Age, -Nativity, -Farm Size, - Access to Credit, - Distance to agricultural office	

	PB.pdf	F.	Health Project			
35	African Journal	2010	Socio-economic	Lack of farmer awareness of the	-Time taken to	-Level of
	of Agricultural	Matata P. Z.,	factors	technology, and inability of farmers	benefit from	awareness
	Research Vol	Ajay O. C.,	influencing	to wait for two years before	the technology	about the
	5(8) pp 818-823,	Oduol P. A. and	adoption of	obtaining direct benefits from the		technology
	May 2010	Agumya A.	improved	technology were found to be the		
	http://citeseerx.i		fallow practices	major constraints to planting		
	st.psu.edu/viewd		among small	improved fallows.		
	oc/download?do		scale farmers			
	i=10.1.1.674.276		in Western			
	6&rep=rep1&ty		Tanzania			
	pe=pdf					
36	Agricultural	2009	Socioeconomic	Results from the study show that	-Institutional	
	Systems, 101,	Mazvimavi, K.,	and institutional	institutional support and agro-	support	
	20–29.	&Twomlow, S.	factors	ecological location have strong	-Agro-	
			influencing the	statistical	ecological	
	DOI:		adoption of	influence on the adoption intensity	location	
	10.1016/j.agsy.2		conservation	of different conservation farming		
	009.02.002 ·		farming by	components		
	Source: RePEc		vulnerable			
			households in			
			Zimbabwe.			
37	Kenyatta	2009	An Analysis	The factors influencing adoption	-Gender	Perceived
	University	Mbugua F.	of Factors	were: Risk perceived, education,	-Age	technology
	institutional	-	Influencing	complexity, perceived benefits,	-Education	characterist
	repository		Adoption of the	income, technology characteristics,	-Income	ics
			Recommended	contact with extension, gender and	-Extension	
			Maize	age	contact	
			Technology's	-		
			Package in			
			Makuyu			
			Division,			
			Murang'a South			

			D.			
			District, Kenya			
38	Journal of	2015	Tree planting	The study found that membership of	-Poverty -	-Attitudes
	Environmental	Meijer S.S.,	by small scale	a farmer group and attitudes had a	Competition	towards
	Psychology 43	Catacutan D.,	farmers in	significant positive influence on	for resources	tree
	(2015) 1e12	Sileshi G.W.,	Malawi: Using	reported behaviour.	with household	planting.
	https://www.scie	Nieuwenhuis	the theory of	Poverty was found to be a barrier to	needs.	
	ncedirect.com/sc	М.	planned	tree planting. The study	- Membership	
	ience/article/pii/		behaviour to	demonstrated that positive attitudes	of a farmer	
	S027249441530		examine the	towards agro-forestry do lead to	group	
	0098		relationship	more trees being planted on farms		
			between			
			attitudes and			
			behaviour			
39	International	Meijer S.S.,	The role of	-More emphasis laid on the role of	-age,	
	Journal of	Catacutan D.,	knowledge,	extrinsic factors such as the	-education -	
	Agricultural	Ajayi O.C.,	attitudes and	characteristics of the adopter and the	level, gender,	
	Sustainability,	Sileshi G.W. &	perceptions	external environment in the	-the external	
	2015 Vol. 13,	Nieuwenhuis	in the uptake of	decision-making process.	environment	
	No. 1, 40–54,	М.	agricultural and	-Concluded that the uptake of	-technology	
	http://dx.doi.org/		agro-forestry	agricultural technologies is a	characteristics	
	10.1080/147359	2014	innovations	complex process influenced by both	eg relative	
	03.2014.912493		among small	extrinsic and intrinsic variables, and	advantage and	
			scale farmers in	recommended that future studies	compatibility	
			sub-	aiming to understand the adoption	I manage	
			Saharan Africa	process of agricultural innovations		
				take into account both sets of		
				variables.		
40	Merit Research	2016	Impacts of	Results showed that the type of	-Extension	
	Journal of	Michura E.G.	Extension	extension	method	
	Agricultural		Methods on	Method used significantly		
	Science and Soil		Women Small	influenced women farmers' adoption		
	Sciences Vol.		Scale Farmers	of conservation agriculture		
	4(10) pp. 131-		Adoption of			

	138 http://meritresea		Conservational Agriculture in			
	rchjournals.org/a		Nakuru County,			
	sss/Content/201		Kenya			
	6/October/Eliud.					
	<u>pdf</u>					
41	http://suaire.sua	2011	Adoption and	Factors found to be linked to	-Age	-Perceived
	<u>net.ac.tz:8080/x</u>	Mignouna, D.B.	Impact of	adoption were:	-Experience	technology
	mlui/bitstream/h		Improved	-Characteristics of household head	-Gender	characterist
	andle/12345678		Agricultural	eg age, farming experience, gender	-Education	ics
	<u>9/1206/DJANA</u>		Technologies In	of household head, years of	-Household	-Risk
	<u>%20BABATIM</u>		Developing	schooling of household head	size	taking
	<u>A%20MIGNOU</u>		Countries: The	-Household size	-Farm size	
	NA.pdf?sequenc		Case of	-Farm size	-Group	
	<u>e=1&isAllowed</u>		Imazapyr-	-Gap between production and	membership	
	≡y		Resistant Maize	consumption	-Extension	
			in Western	-Risk taking	contact	
			Kenya	-Number of extension visits	-Dissemination	
				-Membership to social group	pathway	
				-Effectiveness of dissemination		
				pathway		
				-Complexity of the technology		
40	I	2016	Alenting	-Perceived benefits	Carlar	
42	Journal OI	2010 Mahanga DM	Adoption of	factors offecting adaption of A friend	Gender,	
	Agridusiness III	Nishenga P.M.,	Affican	indigenous vegetables (AWs) into	age,	
	Emorging	Salui M.,	mulgenous	the agree posterel forming sustems	aduation	
	Emerging Economics Vol		vegetables into	Gender age form size education	laval	
	$6 \log 2 \operatorname{nn} 110$	I.R. and Oradu	livelihoods for	level off farm income and number	off_farm	
	126 2016	S I	income and	of extension visits were found to	income_	
	120, 2010	D.I.	food security	positively influence adoption	extension	
	10.1108/IADFF-		1000 security.		contact	
	07-2014-0022				Contact	

43	African	2016	Technology	Results revealed that	-Lack of	_
10	Development	Mukasa A	Adoption and	-lack of sufficient resources to	resources	insufficient
	Bank Working	WIUKasa 71.	Pick Exposure	purchase modern inputs	low	knowledge
	Dank Working		among Small	Palatively low profitability in	-10w	Kilowieuge
	https://www.ofd			-Relatively low promability in	limited	
	<u>https://www.aid</u>		Scale Farmers.	agriculture	-Infinited access	
	b.org/fileadmin/		Panel Data	-limited access to credit and labor	to credit	
	uploads/afdb/Do		Evidence from	constraints	-High costs	
	cuments/Publica		Tanzania and	-high transaction and transportation	-High risks	
	tions/WPS_No_		Uganda	costs		
	233_Technology			-insufficient knowledge about new		
	_Adoption_and_			agricultural technologies or their		
	Risk_Exposure_			availability, and,		
	<u>among_Small</u>			high production, climatic, or price		
	scale_Farmers-			risks, were the factors that affected		
	Panel_Data_Evi			technology adoption		
	dence_from_Tan					
	zania_and_Ugan					
	da B.pdf					
44	Journal of	2015	Factors	The study revealed that the major	-High initial	- Level of
	Environment	Mwase W.,	Affecting	factors affecting adoption of	costs of	awareness
	and Natural	Sefasi A.,	Adoption of	agroforestry were; high initial costs	technology	- Low
	Resources	Nioloma J.,	Agroforestry	of agroforestry practices, low	- unavailability	extension
	Research: Vol.	Betserai I.	and	extension knowledge: unavailability	of agroforestry	knowledge
	5. No. 2: 2015	Nvoka B.L.	Evergreen	of agroforestry germplasm for	germplasm	6
	www.ccsenet.or	Manduwa D. &	Agriculture in	economic, social and biophysical	Bernhaust	
	g/ journal /index	Nyaika I	Southern Africa	categories respectively A large		
	<u>php/enrr/article/</u>	i (yuiku b.	Southern Three	majority of key informants indicated		
	download/48017			that awareness of the connection		
	/2580/			between agroforestry and land		
	<u>/20001</u>			quality improvement could lead to		
				wide scale adoption of the		
				technology		
/15	Iournal of	Namwata R	Adoption of	Results indicated that increased	-Household	
45	Journal of	Namwata, B.	Adoption of	Results indicated that increased	-Household	

	Animal and	M. L.,	improved	household income, being a male or	income
	Plant Sciences,	Lwelamira, J.,	agricultural	married by a household head,	-Sex
	8(1), 927-935	&Mzirai, O. B.	technologies	increased farming experience, access	-Marital status
	http://www.m.el	(2010).	for irish	to credit and extension services were	-Farming
	ewa.org/JAPS/2	` ,	potatoes	positively and significantly	experience
	010/8.1/4.pdf		(Solanumtubero	associated with overall adoption.	-Access to
			sum) among		credit
			farmers in		-Extension
			Mbeya Rural		services
			District,		
			Tanzania: A		
			case of Ihungu		
			Ward.		
46	http://suaire.sua	2013	Institutional and	Results indicated farmer's age had a	-Age
	net.ac.tz:8080/x	Nassari S.E.	Socio-	significant influence on CAWT	-Sex
	<u>mlui/bitstream/h</u>		Economic	packages adoption. Sex and	Education
	andle/12345678		Factors	education level were found to be	level
	<u>9/474/ELISARI</u>		Influencing	statistically insignificant (P<0.05)	-Policy
	A%20SAMWE		Adoption of	but significant (P<0.1) for Cover	framework
	L%20NASSARI		Conservation	Crop and Crop Rotation implying	-Political
	.pdf?sequence=1		Agriculture	less influence to CAWT adoption.	support
	<u>&isAllowed=y</u>		With Trees	Policy analysis showed that few	-Coordination
			(CAWT) in	SSFs had with title deed, weak	among
	Masters thesis,		Karatu and	market links with less access to	stakeholders
	Sokoine		Mwanga	CAWT inputs which are not	
	University of		Districts,	affordable.	
	Agriculture		Tanzania	Institutional frameworks analysis	
				showed poor coordination of CAWT	
				amongst stakeholders and political	
				support.	
47	International	2016	Influence Of	The findings showed that group	-Group
	Journal of Social	Nato G.N.,	Social Capital	involvement and social support are	involvement
	Science and	Shauri H.S. and	On Adoption Of	the two important components of	-Social support

	Technology Vol. 1 No. 1; July	Kadere T.T.	Agricultural Production	social capital that were positively associated with and significantly		
	2016		Technologies	influenced adoption of appropriate		
	http://www.ijsstr		Among Demofision Of	agricultural production technologies.		
	.com/data/front1		Beneficiaries Of	Conversely, social networks, social		
	mages/1.pdf		African Institute	trust, and collective action did not		
			For Capacity	significantly influence the adoption		
			Development	of agricultural production		
			Training	technologies.		
			Programmes In			
			Kenya			
48	Unpublished	2012	An evaluation	Factors found to affect adoption of	- Extension	
	thesis, Egerton	Ndegwa, S.M	of selected	zero grazing dairy production were:	- Markets	
	University,		factors affecting	Low farmer extension agent contact	- Cost of	
	Njoro, Kenya		adoption of zero	Unstable of markets, high cost of	technology	
			grazing dairy	technology, farm size, gender, age	- Farm size	
			production in	and level of education	- Age	
			Kirinyaga ,		- Education	
			Kenya		level	
49	Unpublished	2012	Factors	Adoption is affected by	- Age	
	Masters thesis,	Ndiema A.C.	affecting	Age, Credit constraints, Gender,	- Credit	
	Egerton		adoption of	Education level	- Gender	
	University.		selected wheat	Inaccessibility by the technology	- Education	
	Nioro, Kenva		production	g,	level	
	1, jor 0, 12011 ju		technologies by		- Access to	
			farmers in		technology	
			Nioro district		teennoiogy	
			Kenva			
50	e-Journal of	2005	Uptake of	Limited productivity gain was found	- Level of	
	Agricultural and	Ndjeunga, J.	improved	to be a major constraint to the uptake	productivity	
	Development	and Bantilan.	technologies in	of technologies.	gain	
	Economics Vol.	C	the semi-arid	Poorly functioning institutions. lack	- Poorly	
	2, No. 1, 2005,	·	tropics of West	of information or poor exposure of	functioning	

	pp. 85-102		Africa: Why is	farmers to agricultural innovations	institutions,	
	http://oar.icrisat.		agricultural	and poor functioning or missing	- Lack of	
	org/3185/1/eJA		transformation	markets	information	
	DE 2 1 85-		lagging behind?	were also found to hinder the uptake	or poor	
	102 2005.pdf			of many new technologies.	exposure to	
	<u>+</u>				agricultural	
					innovations	
					- Poor	
					markets	
51	https://d lib msu	2015	Factors	Lack of familiarity with text	- Complexity	
51	edu/islandora/se	Ninsiima D	affecting	messaging was the most significant	of	
	arch/Factors%20		Adoption of	herrier to its use I anguage did not	technology	
	affecting%20Ad		Information	only have a significant impact on	- Language	
	option%20of%2		Communication	ease of use but also on the system's	barrier	
	0Information%2		s Technology	usefulness Results also show that	- Cost	
	0Communicatio		System for	cost education age and gender play	- Education	
	ns%20Technolo		Agriculture in	a significant role in the adoption or	- Age	
	gv%20System%		Uganda	rejection of a system	- Gender	
	20for%20Agricu		C guildu		Gender	
	<u>lture%20in%20</u>					
	Uganda?type=di					
	smax&keyword					
	=Factors%20aff					
	ecting%20Adopt					
	ion%20of%20In					
	formation%20C					
	ommunications					
	%20Technology					
	%20System%20					
	for%20Agricultu					
	re%20in%20Ug					
	anda					
	Thesis,					

	Michigan State					
	Digital					
	Repository					
52	International	2015	Socioeconomic	Education, household size and	Education	
01	Journal of	Nvengere L	Factors	income were found to have	Household size	
	Science and	r (jengere v.	Affecting	significant influence on adoption	Income	
	Research (IISR)		Adoption of	organic manure use	meome	
	ISSN (Online):		Use of Organic	organie manare use		
	2319-7064		Manure as			
	https://www.jisr.		Climate Smart			
	net/archive/v6i2/		Agriculture			
	ART2017669.pd		Technology in			
	f		Malawi			
53	Agricultural	2017	What Does	Results showed that changes in	-Financial	
	Research and	Obayelu A.E,	Literature Say	technology adoption are associated	status	
	Technology	Ajayi O.D,	About the	with changes in the economic	-Scale of	
	Open Access	Oluwalana	Determinants	situation of the country, financial	operation	
	Journal	E.O.A	of Adoption of	status of farm households and the	-Access to	
	Submission:	and Ogunmola	Agricultural	net gain from adopting the	information	
	February 23,	0.0.	Technologies	technology, access to credit, access	-Social	
	2017; Published:		by	to information, travel cost,	network	
	April 21, 2017		Small scales	characteristics of the technology,	Cultural norms	
	https://juniperpu		Farmers?	scale of operation of the farmers,	and values	
	blishers.com/art			income, cultural norms and values,	Access to	
	oaj/pdf/ARTOA			social network and human specific	credit	
	J.MS.ID.555676			factors	-Human	
	<u>.pdf</u>				specific factors	
54	https://www.rese	2013	Why the low	Study findings showed that factors	-Farmer	Farmer
	archgate.net/prof	Odame H.,	adoption of	affecting adoption were: Farm	characteristics	preferences
	ile/Dawit_Alem	Kimenye L.,	agricultural	systems, farmer characteristics and	-Farm systems	
	u/publication/31	Kabutha C.,	technologies in	preferences	-Performance	
	<u>4285316_Why_t</u>	Alemu D., and	Eastern and	- performance of the technologies,	of technologies	

	he_low_adoptio	Oduori L.H.	Central Africa?	their delivery and management	-Delivery of	
	<u>n_of_agricultura</u>			mechanisms, access to extension and	technologies	
	<u>l_technologies_i</u>			other support services, extent of	-Access to	
	n_Eastern_and_			commercialisation of commodities,	extension	
	Central_Africa/li			effectiveness of marketing systems,	-Extent of	
	nks/58bfc6b645			gender-based constraints and the	commercializat	
	85151c7030618			overall policy and institutional	ion	
	a/Why-the-low-			processes responsible for creating an	-Effectiveness	
	adoption-of-			enabling environment for adoption.	of marketing	
	agricultural-				systems	
	technologies-in-				-Gender	
	Eastern-and-				-Overall policy	
	Central-				and	
	Africa.pdf				institutional	
					environment	
55	Journal of	2014	Farm	Household adoption decisions on	-Farmer	
	Agricultural and	Ogada, M.J.,	technology	inorganic fertilizer and improved	characteristics	
	Food	Mwabu G.,	adoption in	maize varieties were found to be	-Farm related	
	Economics2014,	Muchai, D.	Kenya: a	inter-dependent.	factors	
	2:12		simultaneous	Farmer characteristics, plot-level	Access to	
	https://link.sprin		estimation of	factors and market imperfections	credit and	
	ger.com/article/1		inorganic	such as limited access to credit and	input markets	
	0.1186/s40100-		fertilizer and	input markets, and production risks	-Production	
	014-0012-3		improved maize	affected adoption of the two	risks	
			variety adoption	technologies.		
			decisions	C		
56	International	2015	Factors	Type of dairy bred and farmers	-Type of	
	Journal of	Ogola	Influencing	education level were found to be	technology	
	Humanities and	T.D.O.;Lagat	Small scale	positively related to participation	-Education	
	Social Science,	J.K. and	Dairy Farmers		level	
	Vol 5, No.3,	Kosgey I.S.	Participation in			
	March 2015		Voluntary			
			Compliance of			

	http://www.ijhss		Decent Work			
	net.com/journals		Practices: Case			
	<u>/Vol_5_No_3</u>		Study in			
	March_2015/7.p		Nakuru County			
	<u>df</u>		Kenya.			
57	Journal of	2009	Factors	Logistic regression analysis	-Age,	-Level of
	Human Ecology	Okoedo-Okojie	affecting the	indicated that age, farm size,	-Farm size	knowledge
	27 (2): 155-160	DU,	adoption of yam	farming experience and contact with	-Farming	about the
	(2009)	Onemolease	storage	extension agents had significant	experience,	technology
	http://citeseerx.i	EA.	technologies in	influence on farmers' adoption of	-Contact with	
	st.psu.edu/viewd		the Northern	improved yam storage technology.	extension	
	oc/download?do		Ecological zone	Major constraints limiting the	-Availability of	
	<u>i=10.1.1.542.823</u>		of Edo State,	farmers' adoption of these	technology	
	<u>4&rep=rep1&ty</u>		Nigeria. J.	technologies were; ignorance of	-Cost of	
	<u>pe=pdf</u>		Human Ecol.	technology existence and high cost	technology	
			27(2):155-160.	of the some of the storage		
				technologies.		
58	http://researchar	2011	Understanding	The study found that farmers'	-Physical and	-Farmers'
	chive.lincoln.ac.	Pereira Mariana	technology	choices depend both on their goals	financial	goals and
	nz/bitstream/han	de Aragão	adoption and	and values, and on the physical and	resources	Values
	<u>dle/10182/3866/</u>		non-adoption: a	financial bundle of resources that	available	Perceived
	Pereira_PhD.pdf		case study of	they have at their disposal.		technology
	?sequence=3&is		innovative beef	It is the resources, goals and values		attributes
	<u>Allowed=y</u>		farmers from	that determine the farming system.		
			Mato Grosso do	This, in turn, influences how these		
	PhD thesis,		SulState, Brazil	farmers perceive the technology		
	Lincoln			attributes, particularly compatibility,		
	University			and hence defines adoption and non-		
	-			adoption of specific technologies.		
59	Agricultural	2004	Who is using	Gender, marital status and household	-Wealth	
	Systems	Phiri, D.,	the new	headship among women were not		
	79(2):131-144	Franzel S.,	technology?	found to influence planting		

	https://www.rese	Mafongoya P.,	The association	improved fallows		
	archgate.net/pub	Jered I.	of wealth status	There was some association between		
	lication/2230211	Katanga R., and	and gender with	planting improved fallows and		
	91_Who_is_usin	Phiri S.	the planting of	wealth.		
	g_the_new_tech		improved tree	Adoption of improved fallows was		
	nology_The_ass		fallows in	found to be a gender-neutral and		
	ociation_of_wea		Eastern	wealth-neutral.		
	lth_status_and_g		Province,			
	ender_with_the_		Zambia.			
	planting_of_imp					
	roved_tree_fallo					
	ws_in_Eastern_					
	Province_Zambi					
	<u>a</u>					
60	World Applied	2009	Analysis of	Results showed that level of		-Level of
	Sciences Journal	Rezvanfar A.,	Factors	knowledge could explain 83.5		farmer's
	6 (5): 644-651,	Samiee A. and	Affecting	percent of the variation in the		knowledge
	2009	Faham E.	Adoption of	adoption level of sustainable soil		
	https://pdfs.sema		Sustainable	conservation practices.		
	nticscholar.org/1		Soil			
	<u>cf6/2f632a69b78</u>		Conservation			
	<u>d4b7447618207</u>		Practices among			
	<u>64612b08870c.p</u>		Wheat Growers			
	<u>df</u>					
61	American-	2007	Factors	Findings revealed that adoption of	-Cost and	
	Eurasian	Rousan L.M.	influencing	improved farm practices was	relative	
	Journal of		Adoption of	positively influenced by; cost and	advantage of	
	Agriculture and		Improved Farm	relative advantage of the technology,	technology	
	Environmental		Practices among	land tenure, communication ability	-land tenure	
	Science 2(3):		Women	and credibility of the extension	Communicatio	
	220-226, 2007		Farmers in	worker.	n ability and	
	https://www.ido		Northern		Credibility of	
	si.org/aejaes/jaes		Jordan.		the extension	

	<u>2%283%29/3.pd</u> f				worker	
62	1http://kubanni.abu.edu.ng:8080/jspui/bitstream/123456789/1153/1/SOCIO-ECONOMIC%20FACTORS%20INFLUENCING%20ADOPTION%20OF%20RECOMMENDED%20COTTON%20PRODUCTION%20PRACTIICES%20BY%20FARMERS%20IN%20ZAMFARA%20STATE,%20NIGERIA.pdfMSc Thesis,Ahmadu BelloUniversity,Nigeria	2012 Saddiq N.M.	Socio- Economic Factors Influencing Adoption Of Recommended Cotton Production Practices By Farmers In Zamfara State, Nigeria	Education level, farming experience, extension contact, membership of social organization and affordability of the technology had positive influence of adoption. Labour was found to be negatively significant. Reduction in commodity prices also had negative influence on adoption	-Extension contact -Group membership -Labour -Commodity price -Farming experience Education	
63	African Journal of Agricultural Research Vol. 2 (10), pp. 544- 551, October 2007 http://repository.	2007 Salasya, B., Mwangi W., MwabuD., and Diallo A.	Factors influencing adoption of stress-tolerant maize hybrid (WH 502) in western	Technology related attributes of WH 502 that influenced its adoption were high yield, early maturity and non- lodging. Important socio-economic factors found to influence adoption were; farm size, cattle ownership,	-Farm size -Cattle ownership -Education level -Locality specific	

	cimmyt.org:808 0/xmlui/bitstrea m/handle/10883/ 3051/90133.pdf? sequence=1&is <u>Allowed=y</u>		Kenya	education level of the farmer and locality specific characteristics	characteristics
64	http://oaktrust.li brary.tamu.edu/b itstream/handle/ 1969.1/157901/ SHAW- THESIS- 2014.pdf?sequen ce=1 Masters thesis, Texas A & M University	Shaw C.S. 2014	Agricultural Technology Adoption In West Africa	Results showed factors influencing adoption to be: Gender of household head, interaction with extension agents, membership in agricultural group, access to credit, age of household head, years of formal education, distance to market and, family size	-Gender of household head -Extension contact -Group membership -Age -Education -Family size -Distance to market
65	http://ageconsear ch.umn.edu/bitst ream/126760/2/ Selected Paper prepared for presentation at the International Association of Agricultural Economists (IAAE) Triennial Conference, Foz do Iguaçu,	2012 Simtowe F., Muange E., Diagne A.,	Technology Awareness and Adoption: The Case of Improved Pigeon pea Varieties in Kenya	Adoption was found to be prominent among farmers that are close to the agricultural offices, and among younger and wealthier farmers.	-Age -Wealth -Distance to the agricultural offices

	Brazil, 18-24					
	August, 2012.					
66	file:///G:/EOA%	2016	Determinants of	The study assessed the yield	-Human capital	
	202016/ADDITI	Tarisay P.	yield impact	advantage and adoption dynamics of	-Asset	
	ONAL%20LITE		and adoption of	conservation agriculture in	endowment	
	RATURE/Pedzi		conservation	Zimbabwe.	-Institutional	
	sa_Determinants		agriculture	Human capital, asset endowment	variables	
	<u>_2016.pdf</u>		among small	and institutional variables (loss of		
	PhD Thesis,		scale farmers in	NGO support in provision of		
	University of		Zimbabwe	fertilizers) affect dis-adoption		
	Pretoria			decisions		
67	Journal of	2013	Effect of	Adoption of improved crop	-Timeliness of	
	Biology,	Ukaejiofo Rex	Extension	practices/technologies correlated	training	
	Agriculture and	Uzonna Gao	Programs on	significantly and positively with	-Method of	
	Healthcare	Qijie	Adoption of	timeliness of training, method of	training	
	Vol.3, No.15,		Improved Farm	training, number of media used and,	-Number of	
	2013		Practices by	availability of inputs.	media used	
	www.iiste.org		Farmers in		-Availability of	
			Adana,		inputs	
			Southern			
			Turkey			
68	African Journal	2013	Socio-economic	Adoption of new technology in the	-Relying on	
	of Agricultural	Van den Berg,	factors affecting	form of Napier grass trap crops was	farming as	
	Research Vol 8	J.	adoption of	significantly higher amongst farmers	primary	
	(35) pp 4490-		improved	that relied only on farming as a	economic	
	4500		agricultural	source of income. There were no	activity	
	http://www.acad		practices by	significant relationships between		
	emicjournals.org		small scale	adoption of improved technologies		
	/article/article13		farmers in	and farmer age, off-farm income and		
	80899833_Berg.		South Africa	cultivation methods		
	pdf					
69	Nutrient	2007	Factors	The study found that the use of both	-Household	
	Cycling in Agro-	Waithaka,	affecting the	manure and fertilizer reciprocally	factors	

	ecosystems	M.M.,	use of fertilizers	influence each other and are	
	Volume 78,	Thornton, P.K.,	and manure by	strongly influenced by household	
	Issue 3, pp 211–	Shepherd, K.D.	small scale	factors, and also imply that manure	
	224	and Ndiwa N.N.	farmers: The	and fertilizer uses are endogenous.	
	July 2007		case of Vihiga.		
	https://link.sprin		western Kenva		
	ger.com/article/1				
	0.1007/s10705-				
	006-9087-x				
70	Journal of	2015	Why don't	- Mismatch between the design of	Perceived
	Information	Wyche S. and	farmers use cell	market information services and	complexity
	Technology for	Steinfield C.	phones to	small scale farmers' perceptions of	and
	Development.		access market	their mobile phones' communication	compatibili
	22(2) pp 320-		prices?	capabilities	ty of
	333		Technology	1	technology
	DOI:		affordances and		25
	10.1080/026811		barriers to		
	02.2015.104818		market		
	4		information		
			services		
			adoption in		
			rural Kenya		

APPENDIX 2

Multiple Comparison Table for Farmer Learning Preferences

TT 11 11	11 1. 1	•	CC	1 .	C	1	1 •	
Table II	Multiple	comparisons	of farmer	learning	preterences	by ward	l using	Tukev HND
10000011	mmpro	<i>eenrp c c c c c c c c c c</i>	<i>cj jen mer</i>		p of the the test			1

						95% Con	fidence
			Mean			Inter	val
Dependent			Differen	Std.		Lower	Upper
Variable	(I) Ward:	(J) Ward:	ce (I-J)	Error	Sig.	Bound	Bound
Repetitiveness	Kola-Muumandu	Mutituni-	11398	48313	995	-1 1428	1 3708
of message		Ngelani	.11570	.+0313	.))5	-1.1420	1.5700
		Shieywe	.10354	.46663	.996	-1.1103	1.3174
		Butsotso South	.79607	.44224	.278	3543	1.9465
	Mutituni-Ngelani	Butsotso South	.68209	.46980	.470	5400	1.9042
	Shieywe	Butsotso South	.69254	.45282	.423	4854	1.8705
Concrete learning	Kola-Muumandu	Mutituni- Ngelani	.22222	.52292	.974	-1.1379	1.5824
	Shieywe	Kola-Muumandu	1.17460	.48758	.080	0936	2.4428
		Mutituni Ngelani	1.39683*	.52611	.044	.0284	2.7653
	Butsotso South	Kola-Muumandu	1.34127*	.46652	.024	.1278	2.5547
		Mutituni- Ngelani	1.56349*	.50666	.013	.2456	2.8814
		Shieywe	.16667	.47010	.985	-1.0561	1.3894
Verification of information	Kola-Muumandu	Mutituni- Ngelani	.93391	.74610	.595	-1.0066	2.8744
		Butsotso South	1.29762	.67914	.228	4687	3.0640
	Mutituni-Ngelani	Butsotso South	.36371	.72193	.958	-1.5139	2.2413
	Shieywe	Kola-Muumandu	.08333	.71507	.999	-1.7764	1.9431
		Mutituni- Ngelani	1.01724	.75582	.535	9485	2.9830
		Butsotso South	1.38095	.68981	.192	4131	3.1751
Timeliness of learning	Mutituni- Ngelani	Kola-Muumandu	.43651	.67953	.918	-1.3322	2.2052
	Shieywe	Kola-Muumandu	2.97222^{*}	.65520	.000	1.2668	4.6776
		Mutituni- Ngelani	2.53571*	.69786	.002	.7193	4.3521
		Butsotso South	1.23649	.65102	.233	4580	2.9310
	Butsotso South	Kola-Muumandu	1.73574^{*}	.63133	.034	.0925	3.3790

		Mutituni- Ngelani	1.29923	.67550	.223	4590	3.0574
Solitary	Kola-Muumandu	Shieywe	.74242	.61254	.620	8510	2.3358
learning		Butsotso South	1.50000	.58052	.052	0101	3.0101
	Mutituni-	Kola-Muumandu	.08621	.63419	.999	-1.5635	1.7359
	Ngelani	Shieywe	.82863	.64693	.577	8542	2.5115
		Butsotso South	1.58621	.61670	.054	0180	3.1904
	Shieywe	Butsotso South	.75758	.59440	.581	7887	2.3038
Learning through others	Kola-Muumandu	Mutituni- Ngelani	.15996	.42411	.982	9430	1.2629
	Shieywe	Kola-Muumandu	.03413	.40348	1.000	-1.0152	1.0834
		Mutituni- Ngelani	.19409	.42681	.969	9159	1.3040
	Butsotso South	Kola-Muumandu	.18651	.38605	.963	8175	1.1905
		Mutituni- Ngelani	.34647	.41037	.833	7208	1.4137
		Shieywe	.15238	.38901	.980	8593	1.1640
Abstract	Kola-Muumandu	Butsotso South	.09921	.46471	.997	-1.1093	1.3077
learning	Mutituni-	Kola-Muumandu	1.46073*	.51052	.025	.1331	2.7884
	Ngelani	Shieywe	.99803	.51377	.215	3381	2.3341
		Butsotso South	1.55993^{*}	.49399	.010	.2753	2.8446
	Shieywe	Kola-Muumandu	.46270	.48568	.776	8004	1.7258
		Butsotso South	.56190	.46827	.628	6559	1.7797
Peer learning	Kola-Muumandu	Mutituni- Ngelani	.50192	.48225	.726	7522	1.7561
		Shieywe	.32063	.45879	.897	8725	1.5138
		Butsotso South	.70635	.43898	.377	4353	1.8480
	Mutituni-Ngelani	Butsotso South	.20443	.46663	.972	-1.0091	1.4180
	Shieywe	Mutituni- Ngelani	.18128	.48532	.982	-1.0808	1.4434
		Butsotso South	.38571	.44234	.819	7646	1.5361

*. The mean difference is significant at the 0.05 level.

APPENDIX 3 Questionnaire for Small Scale Farmers

- 1. Names (Optional) _____ Tel. contact _____
- 2. Sub- County: _____
- 3. Ward:

4. Background Information

Sex	Marital	Age	Level of education	Land Size	Years of	Sources of	Average Income
1=male	status	(in years)		and	farming	income	per Year (KSh.)
2=fema	1=Single	1=Below 25	1=no formal education	Ownership	experience	1=Farm	1=Below 60,000
le	2=Married	2=25-35	2=primary level	1=own		income	2=60,000- 119,000
	3=Divorced	3=36-45	3=secondary level	2-Family		2=Business	3=120,000-179,000
	4=Separated	4=46-55	4=college education	3=Rented		3=Employmen	4=180,000-240,00
	5=Widowed	5=Over 55	5=others(specify)			t	5=Over 240,000
						4=Pension	
						5=Remittances	
						6=Other	
						(specify)	
				[acres]			
[]	[]	[]	[]	[]	[]	[]	[]

5. Information on Crops Production and Marketing

	Principle Crops Grown in Order of Importance											
	1	2	3									
Acreage												
Yield												
Quantity sold per												
season												
Money earned per												
season												

6. Information on livestock production and Marketing

Class of	Breed/type	No. of animals	Quantity of Livestock	Unit Price	Total annual income
Livestock		owned	/ products sold per		
			month/year		
Cattle			a=milk		
			b=live animal		
			c=dung		
Sheep					
Goats					
Chickens			a=Eggs (No. of trays)		
			b=Live chicken		
Donkeys					
Rabbits					
Bees		No. of	Kgs of honey		
		hives			

Q.7. Extension services

(Ask respondent about his or her own experiences in the last 12 months

Have you received	From whic	h source	Distance to source of		Which two		Which extension		What is your		
any extension advice	did you rec	did you receive e			attributes made		service p	rovider	level of		
within the past 12	advice for	the	information	n	you use the service		do you prefer?		satisfaction with		
months?	enterprises	enterprises below: H		For:		provider you have		For		the performance	
1=Yes	a) <i>Crops</i>	a) Crops d		a) Crops		1?	a) Crops		of various		
0=No	b) Liveste	ock	b) Liveste	ock			b) Livest	ock	agricultural		
[If No skip to Q7.9]	(Fill in the	codes			Use code	es below	(tick in t	he	extensio	on	
	provided in	n the					appropri	iate	services	?	
	appropriat	e column)					column ı	ising	For:		
							codes in	the first	a) Crop	S	
							column)	Ū	b) Livestock		
0 7.1	QZ	7.2	Q7	7.3	(27.4	Q.7.5		Q7.6		
	a	b	a	b	a	b	a	b	a	b	
[]											
Codes for Q.7.2, 7.5	and Q.7.10		Codes for	Q.7.3	Codes fo	or Q.7.4			Codes f	or Q.7.6	
1= Government agent			1=Near		1= Accessibility			l=very satisfied			
2 = NGOs			2=Average	distance	2=Reliability				2=satisfied		
3=Farmer organization	ns		3=Far		3=Repetition				3=Dissatisfied		
4=CBOs					4=Cost o	of service			4= Very		
5=Mobile phones					5=Usefu	lness of info	ormation		dissatisfied		
6=Input dealer/agri-en	nterprise				6=Profes	ssionalism					
7=Neighbour/other farmers					7=Other	(Specify)					
8=Research organizati	ion										
9=Radio/television											
10=Newspaper/magaz	zines/brochu	res									
11=ASK Shows											
12=Others											
(specify)											

Q.7 Extension Methods

Metho	ds used to	Which	method	Did you a	actively	From which	Why did you	Which chan	nels of	
learn a	bout:	do you	prefer to	seek advi	ce on crop	service	not seek	information	used in	
<i>a</i>)	Crop	learn?		or livestock		provider did	advice?	dissemination of		
b)	Livestock	a) Cro	р	last 12 m	onths?	you get		agricultural technology		
(You c	an fill up	b) Live	estock	1=yes		information		do you know	do you know about?	
to 3)		(Use the	e same	0=No [sk	ip to	from?	List up to two	(Can fill up	to 3 below)	
		codes a	s for	Q7.11]		Use code for				
		Q7.7)		If yes, for	what?	Q7.2	(Use codes			
				(Use code	es below,	(Can fill up	below)			
				fill colum	n b)	to 3 sources)				
Q7.7	Q7.7 Q7.8			Q7.9		Q7.10	Q7.11	Q7.12		
а	h	а	b	a b				a	d	
u		"	0	u	Ŭ			"		
Codes	Q7.7			Codes Q'	7.9		Codes for			
1= farm	n visits			1=Crop p	roduction	7= fish	Q7.11			
2=dem	onstrations	5		2=horticu	lture	farming	_			
3=tour				3=Dairy of	cows	8=Processing	1=Long	4=extensior	agents not	
4=field	l day			4=Beef p	roduction	9=Marketing	distance 2=	distance 2= available		
5=farm	ner field scl	nool		5=dairy g	joats	10=Poultry	Expensive	Expensive 5=other		
6= mas	ss media			6= bee ke	eping	farming 3=takes too				
7= other (specify)				11=other	much time					
	- •					(specify)				

Q.8. Preferred approaches/methods of being taught

Below are statements about your learning preferences with regard to extension. Tick as appropriate. (SD=Strongly disagree; D=Disagree; NS=Not Sure; A=Agree; SA=Strongly Agree)

Ser. No.	Statements about Preferred Learning Method	SD	D	NS	Α	SA
1.	I prefer to learn or be taught alone					
2	I prefer to learn in a group together with other farmers					
3	The best time for me to learn is in the morning hours					
4	I prefer to learn during the afternoon hours					
5	I can learn well at any time of the day					
6	When I am learning something, I prefer to hear it more than once					
7	When I hear something once I remember it well and don't need to have it repeated					
8	I learn better from my fellow farmers than from extension service providers					
9	I like to look for new information for myself and do not wait to get it from other people					
10	Before I apply something learnt from the TV or radio, I have to check with my fellow farmers					
11	Before I apply something learnt from the TV or radio, I have to check with the extensionists					
12	I apply technologies learnt from the TV or radio, without consulting other people					
13.	I learn best when I try out what I am taught					
14.	I can understand and try out technologies even if I don't learn them practically					
15.	I enjoy learning new things and am always ready to try them out					
16.	I usually fear to try out new things and prefer to wait for others to try them out first					
17.	I prefer learning at my home/farm or at the home/farm of another farmer					
18.	The best venue for being trained is at the Agriculture training centre					
19.	I enjoy it more when I am taught in a location away from my usual surrounding					
20.	I prefer to get information through other farmers or the extension service other than getting					
	information for myself					

Q.9. Give suggestions on how you prefer to learn or to be taught

Q.10. Why do you prefer to learn or be taught the way you have stated above?

APPENDIX 4 Questionnaire for Extension Service Providers

Instructions for completing the questionnaire: Answer all questions

1. Names (Optional)	County:		
2. Sub- County:	Ward:		
3. Gender: Male Female			
4. Age (tick one) Less than 25 years 25-35 years	36- 45 years	46-55 years	Over 55 years
5. Highest level of training: (Certificate, diplo	oma, degree, postgraduate)		
6. Category of extension organization/provide	er (tick one) Public	Private	
7. Area of specialization: Crops (specify)	Livestock Other	ſ	

8. Methods of Extension service delivery

Method of extension service delivery		Which methods do you commonly use? (choose all that apply from the list)	Which methods do you prefer to use? (choose all that apply from the list)	Reasons for preference: (Use the codes below) 1=Cost effective 2=Reaches more farmers 3=Easier to use 4=Less time consuming 5=Other (specify)	Which methods do you rarely use? (choose all that apply from the list)	For the methods not preferred, what are your reasons? 1=Lack of finances 2=Low attendance by farmers 3=Too demanding 4=Not effective 5=cost effectiveness	Which methods do you think bring about the most learning and participation from farmers?	If you were well supported, which methods would you use which you are not able to use now
	I .	8.1	Q8.2	8.3	8.4	8.5	8.6	8.7
F 11	codes							
Farm and nome								
VISIUS	2							
Field days	2							
	3							
Farmer groups	4							
Contact farmers	5							
Radio Talassisian	0							
Videos	/							
Videos	ð 0							
Tours and field trips	9							
Printed materials	10							
ASK Shows	11							

Mobile phones	12				
Meetings/Barazas	13				
Other(Specify)	14				

APPENDIX 5 Map of Kenya Showing Kakamega and Machakos Counties

